Seeing Failure in Your Life: Imagery Perspective Determines Whether Self-Esteem Shapes Reactions to Recalled and Imagined Failure

Lisa K. Libby, Greta Valenti, and Alison Pfent
The Ohio State University

Richard P. Eibach
University of Waterloo

The present research reveals that when it comes to recalling and imagining failure in one’s life, changing how one looks at the event can change its impact on well-being; however, the nature of the effect depends on an aspect of one’s self-concept, namely, self-esteem. Five studies measured or manipulated the visual perspective (internal first-person vs. external third-person) individuals used to mentally image recalled or imagined personal failures. It has been proposed that imagery perspective determines whether people’s reactions to an event are shaped bottom-up by concrete features of the event (first-person) or top-down by their self-concept (third-person; L. K. Libby & R. P. Eibach, 2011b). Evidence suggests that differences in the self-concepts of individuals with low and high self-esteem (LSEs and HSEs) are responsible for self-esteem differences in reaction to failure, leading LSEs to have more negative thoughts and feelings about themselves (e.g., M. H. Kernis, J. Brockner, & B. S. Frankel, 1989). Thus, the authors predicted, and found, that low self-esteem was associated with greater overgeneralization—operationalized as negativity in accessible self-knowledge and feelings of shame—only when participants had pictured failure from the third-person perspective and not from the first-person. Further, picturing failure from the third-person, rather than first-person, perspective, increased shame and the negativity of accessible knowledge among LSEs, whereas it decreased shame among HSEs. Results help to distinguish between different theoretical accounts of how imagery perspective functions and have implications for the study of top-down and bottom-up influences on self-judgment and emotion, as well as for the role of perspective and abstraction in coping.

Keywords: imagery perspective, subjective construal, shame, self-esteem, coping

Failures are like skinned knees, painful but superficial.

—Ross Perot

I failed first grade, which is my biggest problem. You always feel like a failure, like you’re stupid.

—Amy Sedaris

Perot and Sedaris would likely agree that the experience of failure is unpleasant; yet the meaning they see failure to have in the broader context of their lives appears to differ. Perot believes that any given failure is insignificant relative to what truly defines him as a person, whereas Sedaris considers the failure she experienced to be self-defining. The subjective nature of these impressions becomes apparent upon considering that one of Perot’s life failures—an unsuccessful attempt at the U.S. Presidency—should have consequences at least as significant as those of failing first grade. And, despite failing first grade, Sedaris has achieved quite a bit of success as an author, and comedienne, just as Perot has in the world of business. Nevertheless, it seems likely that to the extent that these individuals rely on their impressions of the meaning of failure in their lives, their reactions to thinking about those failures would diverge, and Sedaris would end up worse off.

Given that it is impossible to get through life without experiencing failure, an important determinant of well-being is how one subjectively interprets and copes with such incidents. This is true not only as events unfold in real time (Niiya, Crocker, & Bartmess, 2004) but also as people mentally simulate them in memory and imagination (Taylor, Pham, Rivkin, & Armor, 1998). In the research reported here, participants recalled or imagined failures in their own lives. We were interested in how an aspect of these mental simulations—visual perspective in event imagery—would influence their reactions to thinking about their failures.

Existing accounts make conflicting claims about the effect of imagery perspective on coping with negative life events, either proposing that third-person imagery—in which the self is pictured from an external visual perspective—facilitates adaptive coping (e.g., Kross, Ayduk, & Mischel, 2005) or interferes with it (Kenny, Bryant, Silove, Creamer, O’Donnell, & McFarlane, 2009). We offer an alternative account that predicts that third-person imagery should have the potential to produce either effect, and we test a crucial moderator when it comes to picturing personal failure: self-esteem. Results help to distinguish between different theoretical models of how imagery perspective functions and suggest a new way to conceptualize
the role of imagery perspective and abstraction in coping with negative experiences.

Imagery Perspective

As people recall and imagine life events, they often form mental images of those events (Moulton & Kosslyn, 2009) and may do so from different visual perspectives (Nigro & Neisser, 1983). With the first-person perspective, one sees the event from their own vantage point, as an actor in the scene; with the third-person perspective, one sees the event from an external vantage point, watching the self. This subtle phenomenological variable can have powerful effects on responses to pictured events, influencing judgment, emotion, and behavior (e.g., Libby, Shaheffer, Eibach, & Slemmer, 2007; McIsaac & Eich, 2002; Valenti, Libby, & Eibach, 2011; Vasquez & Buehler, 2007). However, the function of imagery perspective responsible for such effects is still under investigation.

The present experiments contribute to this endeavor by testing predictions from a model (Libby & Eibach, 2011b) that proposes imagery perspective to function in representing the level of meaning in event representations. According to this model, picturing an event from the first-person perspective causes people to understand it bottom-up, in terms of the phenomenology evoked by concrete features of the pictured situation, apart from the broader context. Picturing an event from the third-person perspective causes people to understand it top-down, in terms of abstractions that integrate it with its broader context. Evidence supporting this model demonstrates that actions (e.g., “wiping up a spill”) are understood in terms of constituent aspects (e.g., “using a sponge”) from the first-person perspective but in terms of connections to causes, consequences, traits, goals, and identities from the third-person perspective (e.g., “cleaning up after the kids,” “being a responsible parent”; Libby, Eibach, & Gilovich, 2005; Libby, Shaheffer, & Eibach, 2009; Vasquez & Buehler, 2007). Converging with the idea that visual perspective is the causal element in producing these effects, they emerge not only when visual perspective is manipulated in mental imagery but also when it is manipulated by means of photographs—even when the photographs control the objects in the image and the distance to the action (Libby et al., 2009).

In considering the implications of these findings for responses to recalled and imagined life events, we invoke the notion of the self as a dual-faceted structure that involves an experiential awareness of the present moment and a conceptual representation of the self as an entity that persists across time. James’s (1890/1950) distinction between the I-self and the me-self exemplifies this notion, and similar models shape the study of the self across diverse traditions of scholarship, from philosophy to neuroscience (e.g., Gallagher, 2000; LeDoux, 1996). The experiential “I” is defined by the phenomenology evoked bottom-up by concrete features of the environment and one’s actions on it. The conceptual “me,” or self-concept, is defined by a rich assemblage of diverse meaning-making structures including self-schemas (Markus, 1977), self-theories (Hong, Chiu, Dweck, Lin, & Wan, 1999), and self-narratives (McAdams, 2001; Neisser, 1994; Singer & Salovey, 1993). This diverse array of meaning-making structures organizes and sometimes biases the processing of self-relevant information so as to maintain the conceptual self as a coherent, and often positive, entity (e.g., Ross, 1989; Sanitioso, Kunda, & Fong, 1990; Sedikides & Strube, 1997; Swann, 1983).

The experiential and conceptual facets of the self tend to be interrelated in real time (e.g., Farb et al., 2007); however, the effect of imagery perspective on processing style suggests that imagery perspective may function to differentially highlight these two facets of the self when people picture events in memory or imagination. Specifically, we propose that first-person imagery represents an event in terms of the experiential “I,” and third-person imagery represents the event in relation to the conceptual “me” (Libby & Eibach, 2011b). If so, the knowledge structures and motivations that define the conceptual self should shape reactions to life events when they are pictured from the third-person perspective but not from the first-person. When it comes to shaping reactions to failure, evidence suggests that the aspect of the self-concept most relevant to consider is self-esteem.

Self-Esteem

Self-esteem is an aspect of the self-concept that captures people’s global self-evaluations (Conner Christensen, Wood, & Barrett, 2003; Epstein, 1973). One of the most well documented differences between low- and high-self-esteem individuals (LSEs and HSEs) is in how they react to failure: LSEs have more extreme negative reactions (Blaine & Crocker, 1993; Taylor, 1991). In particular, LSEs are prone to overgeneralize, a response style that is characterized by “a tendency to bring thoughts of personal inadequacy to mind and/or experience a reduction in the sense of self-worth” (Carver, Gansellen, & Behar-Mitrani, 1985, p. 727).

For example, in response to a specific failure, LSEs’ thoughts about themselves in general shift in a negative direction: Their weaknesses and shortcomings become more cognitively accessible in memory (Brown & Smart, 1991; Dodgson & Wood, 1998), and they are prone to judge themselves to be a failure as a person in general (Kernis, Brockner, & Frankel, 1989). LSEs’ feelings about themselves in general also shift in a negative direction in response to a specific failure. Shame reflects global negative feelings about the self and can be distinguished from guilt, an emotion based in negative feelings about a particular action (Tangney & Dearing, 2002; Lewis, 1971; Tracy & Robins, 2004). LSEs are prone to experiencing shame in particular (Tangney & Dearing, 2002; Brown & Marshall, 2001).

In contrast to LSEs, HSEs do not show these negative shifts in thoughts and feelings about the self in response to failure. Instead, HSEs appear to respond in ways that counteract the negative impact, focusing on their strengths and positive feelings about themselves in the face of failure (e.g., Brown & Smart, 1991; Dodgson & Wood, 1998; Dutton & Brown, 1997). Thus, LSEs’ reactions to failure are self-defeating, whereas HSEs’ reactions are self-enhancing.

These different reactions appear to be a product of top-down influences of LSEs’ and HSEs’ global self-views, rather than objective differences in the attributes LSEs and HSEs possess or the failure events they experience. LSEs tend to be no worse off, objectively, than HSEs are on dimensions typically considered to define success and social worth (e.g., intelligence, attractiveness; Brown, 1998). And self-esteem differences in response to failure emerge even when the failure event is held constant by experimental control (e.g., Dodgson & Wood, 1998; Tangney & Dearing,
Thus, self-esteem differences in reaction to failure reflect self-esteem differences in the subjective meaning of failure, and these different subjective meanings reflect the top-down influence of the different global self-views that distinguish LSEs from HSEs. The self-concepts of LSEs promote overgeneralization, whereas the self-concepts of HSEs protect against it (Conner Christensen et al., 2003; Kernis et al., 1989).

Overview of the Present Research

Research documenting self-esteem differences in response to failure has tended to focus on online reactions to failure in the present (cf. Conner Christensen et al., 2003). However, to the extent that these differences result from the influence of the self-concept, our account of imagery perspective’s function predicts that the perspective people use to visually recall or imagine failure should determine whether low self-esteem puts individuals at risk for overgeneralization. If imagery perspective functions to represent an event in terms of the experiential “I” (first-person) or the conceptual “me” (third-person), and if self-esteem differences in overgeneralization reflect the influence of the conceptual “me,” then low self-esteem should predict greater overgeneralization only when individuals picture failures from the third-person perspective and not from the first-person. Further, this account suggests that to the extent perspective influences reactions at high and low levels of self-esteem, third-person imagery should promote overgeneralization among LSEs but protect against it among HSEs.

Testing these predictions has theoretical implications for understanding the function of imagery perspective. According to alternative accounts, picturing an event from the third-person perspective depersonalizes it, detaching it from the self (e.g., McIsaac & Eich, 2004; Sanitioso, 2008; Williams & Moulds, 2008). Such accounts would not readily predict reactions to be more biased in the direction of the self-concept from the third-person than first-person perspective, as we do. Further, these alternative accounts propose that third-person imagery blunts the emotional response to recalled events, relative to first-person imagery. However, our account predicts that third-person imagery should have the potential to increase or decrease shame, depending on self-esteem. Given that shame interferes with adaptive coping, understanding the effect of perspective on feelings of shame has practical implications for well-being, in addition to theoretical implications for understanding the function of imagery perspective.

Study 1

Study 1 served as an initial exploration of our hypotheses to determine whether the predicted patterns emerged when individuals were allowed to picture a failure from the perspective they spontaneously adopted. Participants recalled and mentally pictured a personal failure. They reported on the visual perspective of their event imagery, and they completed a measure of the extent to which they were overgeneralizing from the failure as they pictured it. We predicted that low self-esteem would be associated with greater overgeneralization from the failure only to the extent that participants pictured it from the third-person perspective. Further, we expected that third-person imagery would be associated with greater overgeneralization among LSEs but less overgeneralization among HSEs. As participants pictured their failure, they also rated the extent to which they were feeling shame, allowing us to assess whether similar patterns would emerge for this emotional component of overgeneralization in particular.

Method

Participants. Eighty-three undergraduates (57 women and 26 men) participated for course credit.

Materials and procedure. Participants sat in individual cubicles to complete a computerized questionnaire. The questionnaire began with two individual difference measures. The first was the Rosenberg (1965) Self-Esteem Scale (RSE). The second was the Attitudes Towards Self Scale (ATS, Carver & Ganellen, 1983), an 18-item inventory with factors indexing chronic tendencies to engage in overgeneralization (e.g., “When even one thing goes wrong I begin to feel bad and wonder if I can do well at anything at all”), self-criticism (e.g., “I am not satisfied with anything less than what I expected of myself”), and the use of high standards (e.g., “I am a perfectionist in my goals”).

Next, participants encountered the failure memory prompt. Specifically, they were directed to recall,

... a time when you failed at something that was important to you.

This might be a social or interpersonal failure, an academic failure, a failure in a competitive event, or any time when you failed at something that was important to you.

It was specified that this memory should be from within the past 5 years and should be of an event that occurred at a particular time and place, not a summary of something that happened many times. Participants typed a cue word to identify the event they recalled and then continued to the next screen, which directed them to close their eyes and picture the event for a few moments.

The following screen introduced the distinction between first-person and third-person perspectives using a measure modeled on previous research (D. Cohen & Gunz, 2002; Libby & Eibach, 2002, 2011a). Instructions explained that memories are often accompanied by visual images and that,

With the first-person visual perspective, you see the event from the same visual perspective that you originally did; in other words, in your memory, you are looking out at your surroundings through your own eyes.

With the third-person visual perspective, you see the event from an observer’s visual perspective; in other words, in your memory, you can actually see yourself, as well as your surroundings.

Because participants could have experienced multiple images of the event, and some from each perspective (e.g., Huebnern & Fredrickson, 1999), the questionnaire presented an 8-point scale ranging from entirely first-person (coded as 1) to entirely third person (coded as 8) that participants used to indicate the relative proportion of images experienced from each perspective.

Next, participants responded to four items that together indexed the extent to which they were overgeneralizing from the failure as they pictured it. These items were derived from the overgeneralization subscale of the ATS but worded so that they referred to overgeneralization from the recalled failure in particular, rather than overgeneralization as a chronic tendency. Specifically, participants rated how true they felt each of the following statements
was: “When I think about this event, I feel like I am a failure”; “Even though this event is a failure, it’s just a one-time occurrence where I did not meet a specific goal” (reverse-scored); “When I think about this event, I wonder if I can do well at anything at all”; and “This single event influences how I feel about myself overall.” Participants responded using 5-point fully labeled scales with endpoints anchored at not at all true (coded as 1) and extremely true (coded as 5). These responses (α = .74) were averaged to create an index of event overgeneralization.

The next screen presented instructions for the Positive and Negative Affect Schedule (PANAS, Watson, Clark, & Tellegen, 1988). It was explained that a different feeling or emotion would be shown on successive screens and that for each word participants should “... indicate to what extent you feel that way right now as you picture the event.” Participants responded first to the emotion word, ashamed, and then proceeded to respond to each of the remaining 19 emotion words on the PANAS (10 positive and nine negative), including guilty. Participants responded using 5-point fully labeled scales with endpoints anchored at very slightly or not at all and extremely. Because our hypotheses pertain to shame, unique from guilt, we used a standard method for computing an index of guilt-free shame (Tangney & Deary, 2002) in this and all subsequent studies involving shame. By this method, shame scores are predicted from guilt scores and the standardized residuals serve as an index of guilt-free shame.

At the end of the session, participants described the event they recalled, estimated the date on which it had occurred, and provided demographic information.

Results and Discussion

Predictor variables: Self-esteem and imagery perspective. Self-esteem scores ranged from 2.00 to 4.00, out of the possible 1 (lowest self-esteem) to 4 (highest self-esteem), with a mean of 3.36 (SD = 0.46). Imagery perspective spanned the entire range of the scale, entirely first-person (coded as 1) to entirely third-person (coded as 8), with a mean of 3.36 (SD = 2.18). There was no significant association between self-esteem and imagery perspective (r = .04, p = .71).

Overgeneralization from the recalled failure. We predicted that lower self-esteem would be associated with greater overgeneralization from the recalled failure only to the extent that participants pictured it from the third-person perspective. We used linear regression to test this hypothesis. The model included self-esteem, imagery perspective, and their interaction as predictors. So that we could isolate the relation between imagery perspective for the recalled failure and overgeneralization from that particular failure, we controlled for participants’ chronic tendency to overgeneralize, as assessed by the ATS administered at the beginning of the session, b = .36, β = .40, t(76) = 2.97, p < .01. And because chronic overgeneralization was correlated with self-esteem (r = −.75, p < .001), one of the variables in our predicted interaction, we also controlled for the interaction between chronic overgeneralization and perspective (Yzerbyt, Muller, & Judd, 2004), b = −.08, β = .20, t(76) = 1.57, p = .12. The final covariate was memory age, b = −.005, β = −.17, t(76) = 2.06, p < .05, which we controlled for in all analyses of memories reported here to isolate our predicted effects from those that are associated with the mere passage of time (e.g., Gilbert, Finel, Wilson, Blumberg, & Wheatley, 1998). In this regression analysis and all others reported here, we centered continuous predictor variables at the sample mean before computing the main analyses and recentered these variables at one standard deviation above and below the sample mean to test simple slopes at high and low levels of the variables (J. Cohen & Cohen, 1983).

Consistent with our prediction, the relationship between self-esteem and overgeneralization depended on imagery perspective, b = −.23, β = −.30, t(76) = 2.32, p < .05 (see Figure 1). Lower self-esteem was associated with greater overgeneralization from the recalled failure only when it was pictured predominantly from the third-person perspective, b = −.95, β = −.55, t(76) = 3.58, p < .01, and not when it was pictured predominantly from the first-person perspective, b = .04, β = .02, t(76) = 0.12. Thus, although, on average, low self-esteem was associated with greater overgeneralization from the recalled failure, b = −.45, β = −.26, t(76) = 2.00, p < .05, this effect depended on the failure being pictured from the third-person perspective.

We also investigated how perspective related to overgeneralization from the recalled failure at low and high levels of self-esteem. As predicted, third-person imagery was associated with marginally greater overgeneralization among LSEs, b = .10, β = .28, t(76) = 1.88, p = .06, but significantly less overgeneralization among HSEs, b = −.11, β = −.31, t(76) = 1.97, p = .05. Thus, perspective was not associated with overgeneralization directly, b = −.01, β = −.01, t(76) = 0.16; the effect depended on self-esteem.

Shame. We predicted that low self-esteem would be associated with greater shame only to the extent that failures were pictured from the third-person perspective. To test this hypothesis, we used linear regression to predict participants’ guilt-free shame scores from self-esteem, imagery perspective, and their interaction, with memory age as a covariate.

Indeed, the relationship between self-esteem and guilt-free shame depended on imagery perspective, b = −.31, β = −.31, t(78) = 3.02, p < .01 (see Figure 2).2 Lower self-esteem was associated with greater shame only when failures were pictured predominantly from the third-person perspective, b = −1.06, β = −.49, t(78) = 3.70, p < .001, and not when they were pictured predominantly from the first-person perspective, b = .26, β = .12, t(78) = 0.76. Thus, although low self-esteem was associated with marginally greater shame on average, b = −.40, β = −.18, t(78) = 1.78, p < .08, this trend depended on failures being pictured from the third-person perspective.

We also investigated how perspective related to shame at low and high levels of self-esteem. As predicted, among LSEs, third-person imagery was associated with greater shame, b = .18, β = .40, t(78) = 2.76, p < .01. Third-person imagery appeared to be associated with less shame among HSEs, although the effect was not significant, b = −.10, β = −.21, t(78) = 1.48, p = .14. Thus, perspective was not associated with shame directly, b = .04, β = .10, t(78) = 0.93; the effect depended on self-esteem.

1 There was no significant correlation between chronic overgeneralization and imagery perspective (r = −.06, p = .62).

2 In this and all subsequent studies measuring emotion, the self-esteem by perspective interaction pattern predicted for guilt-free shame did not emerge for shame-free guilt, nor did it emerge on any other emotion items alone or on PANAS indices of general negative or positive affect.
Summary. LSEs’ tendency to overgeneralize from failure emerged only to the extent that failures were pictured from the third-person perspective. The same was true regarding shame, an emotional component of overgeneralization. Further, as predicted, picturing failure from the third-person perspective was associated with a greater negative impact among LSEs but a reduced negative impact among HSEs: LSEs overgeneralized more and experienced more shame when picturing their failure from the third-person than from the first-person perspective, whereas HSEs overgeneralized less when picturing from the third-person than from the first-person perspective.

Because Study 1 involved no intervention to manipulate imagery perspective, the results attest to the relevance of the predicted effects for understanding the naturally occurring dynamics of self-esteem, perspective, and overgeneralization as individuals think about failures in their lives. However, the correlational design of Study 1 also limits any conclusions about causation. Previous research suggests that thinking about an event in relation to the self-concept can cause people to adopt the third-person perspective (Libby & Eibach, 2011a); thus, it is possible that such an effect contributed to the pattern of results in Study 1. This would be consistent with the model that informs our predictions. If third-person imagery functions to represent events in relation to the self-concept, and if people shift perspective according to this function, then the relationship between imagery perspective and level of meaning in events should be bidirectional (Libby & Eibach, 2011b). However, because we were specifically interested in the potential power of imagery perspective to change LSEs’ proneness to overgeneralization, the remaining studies manipulated imagery perspective to isolate its causal role in producing the patterns observed in Study 1. Studies 2 and 3 focused on a cognitive component of overgeneralization (negativity of accessible self-knowledge) and Studies 4 and 5 focused on an emotional component (shame).

Study 2

Study 2 manipulated the visual perspective participants used to picture a personal failure and measured the effect on the association between self-esteem and the relative accessibility of additional personal failures versus successes. We predicted that LSEs would show greater negativity in accessible self-knowledge than would HSEs only when failures were pictured from the third-person perspective, not from the first-person. We also investigated the effects of imagery perspective at high and low levels of self-esteem. According to our account, using the third-person as opposed to first-person perspective should produce greater negativity only among LSEs. To the extent that perspective influences accessible self-knowledge among HSEs, third-person imagery should produce less negativity.

Method

Participants. Three hundred seventeen undergraduates (210 women and 107 men) participated for course credit. Self-esteem data were not collected for 43 participants, so they could not be used in analyses. The final sample consisted of 274 participants, with ns per condition ranging from 63 to 72.

Materials and procedure. Upon signing up for the experiment, participants received an e-mail with a link to a secure website where they could complete the RSE. RSE scores ranged from 1.50 to 4.00, out of the possible 1 to 4, with a mean of 3.22 (SD = 0.47).

In the lab, participants sat in individual cubicles to complete a computerized questionnaire that included two tasks. The first was an imagery task that manipulated the perspective (first-person vs. third-person) participants used to picture a personal failure. The second was a timed event-listing task that manipulated the valence of additional events participants were instructed to list (successes vs. failures). These manipulations were crossed to create four versions of the questionnaire, to which participants were assigned randomly with the stipulation that there be approximately equal numbers per condition.
In all conditions, the questionnaire began with the failure memory prompt used in Study 1. Participants typed a cue word to identify the failure they recalled. Next, instructions introduced the manipulation of imagery perspective, adapted from previous research (e.g., Libby et al., 2005). These instructions varied by condition. In the first-person conditions, participants read,

You should use a FIRST-PERSON visual perspective to picture the failure. With the FIRST-PERSON visual perspective you see the event from the same visual perspective you had when the event originally occurred. That is, you are looking out at your surroundings through your own eyes.

In the third-person conditions, participants read,

You should use a THIRD-PERSON visual perspective to picture the failure. With the THIRD-PERSON visual perspective you see the event from the visual perspective an observer would have had when the event originally occurred. That is, you can see yourself in the image, as well as your surroundings.

Regardless of perspective condition, all participants were directed to close their eyes and form a vivid image of the event from the specified perspective. They were then instructed to hold the image in their minds while they answered the question on the next screen, which served as a manipulation check and varied by condition (first-person condition in italics; third-person condition in brackets): “As you’re picturing it right now, do you see the event [yourself in the event] from the visual perspective you had [an observer would have had] when the event originally occurred?” Participants responded by choosing yes or no. All participants passed this manipulation check.

Next, participants read instructions for the event-listing task designed to measure the relative accessibility of positive and negative self-knowledge. There were two versions of these instructions, either specifying that participants should list personal successes or personal failures. Within each perspective condition participants received one set of instructions or the other (success instructions in italics; failure instructions in brackets):

We are interested in [additional] instances where you [failed] succeeded at something that was important to you. You will have approximately 2 min to think of as many [failures] successes as you can. For each [failure] success (one at a time), please type a cue word or phrase that will identify this event to you.

The 2-min period began when participants advanced to the next screen where there was a text box to type the cue word for the first event they thought of. After typing the cue word, participants pressed return and the text box was cleared for them to type another cue word. They continued in this fashion, listing events at their own pace until the 2 min were up, at which point the computer automatically ended the task.

At the end of the session, participants provided additional information about their responses on the two tasks. They described the initial failure they had pictured and reported the approximate date on which it had occurred. They also classified the events they had listed during the timed task. Specifically, the computer presented the cue word for each event, and participants indicated whether the associated event represented a success, failure, or neither. These classifications allowed us to identify and exclude from the index of accessibility any instances in which participants listed events during the timed task that did not fit the specified category.3

Results and Discussion

We hypothesized that low self-esteem would be associated with greater negativity in accessible self-knowledge only when the initial failure had been pictured from the third-person perspective, not from the first-person. To test this hypothesis, we used linear regression to predict the number of events from the specified category that participants listed during the timed task from self-esteem (centered at the sample mean); imagery perspective (first-person = −1, third-person = 1); type of events participants were instructed to list during the timed task (failures = −1, successes = 1); all higher order interactions; and the covariate, memory age.

Does perspective determine the effect of self-esteem on relative negativity of accessible self-knowledge? Consistent with previous research showing an advantage for memory of positive life events (Walker, Skowronski, & Thompson, 2003), participants tended to list more successes than failures, overall, b = 1.75, β = .47, t(265) = 8.66, p < .001. However, in addition, supporting our hypothesis, whether self-esteem predicted the relative accessibility of successes versus failures depended on imagery perspective, b = .85, β = .11, t(265) = 1.95, p = .05 (see Figure 3).

When participants had used the third-person perspective, low self-esteem predicted relatively greater negativity in accessible self-knowledge, b = 1.79, β = .22, t(265) = 2.97, p < .01. In this condition, LSEs listed significantly fewer successes, b = 2.22, β = .27, t(265) = 2.60, p < .05, and marginally more failures, b = −1.36, β = −.17, t(265) = 1.60, p = .11, than did HSEs.

In contrast, when participants had pictured the initial failure from the first-person perspective, self-esteem was not a reliable predictor of negativity, b = .09, β = .01, t(265) = 0.14. In this condition, successes were more accessible than failures, b = 1.90, β = .51, t(265) = 6.54, p < .001, regardless of participants’ level of self-esteem. Thus, although low self-esteem was associated with relatively greater negativity on average, b = .94, β = .12, t(265) = 2.15, p < .05, this effect depended entirely on participants’ picturing the failure from the third-person perspective.

How does perspective influence the relative negativity of accessible self-knowledge among LSEs and HSEs? As predicted, picturing failure from the third-person rather than first-person perspective produced marginally greater negativity of accessible self-knowledge among LSEs, b = −.55, β = −.15, t(265) = 1.92, p < .06. No such negative effect of third-person imagery emerged among HSEs, who showed positive bias, b = 2.19, β = .58, t(265) = 7.56, p < .001, regardless of perspective, b = .25, β = .07, t(265) = 0.87. Thus, perspective did not influence the accessibility of successes versus failures directly, b = −.15, β = −.04, t(265) = 0.74; the effect depended on participants’ self-esteem.

Summary. As predicted, upon recalling personal failure, accessible self-knowledge was relatively more negative among LSEs than HSEs only when picturing the failure from the third-person perspective, not from the first-person perspective. Further,

3 On average, participants listed 1.67 events (SD = 3.12) during the timed task that did not fit the specified category.
picturing failure from the third-person, rather than first-person, perspective caused accessible self-knowledge to become relatively more negative at low levels of self-esteem. Perspective had no significant effect at high levels of self-esteem. Theoretically, among HSEs, third-person imagery could have been expected to further reduce the negativity of accessible self-knowledge compared with first-person imagery. The fact that this did not occur could be due to the certainty of HSEs’ positive beliefs about their self-attributes (Riketta & Ziegler, 2007). It is also possible that the lack of perspective effect among HSEs reflects ceiling and floor effects on the number of successes and failures that could be generated in the specified time.

What is most important for our hypothesis, however, is that low self-esteem predicted greater negativity only when failures were pictured from the third-person and that imagery perspective had a different effect on negativity of accessible self-knowledge for low- and high-self-esteem individuals, with third-person imagery producing greater negativity among LSEs only. To determine whether the patterns observed in Study 2 were reliable, we sought to replicate them in Study 3 while exercising stricter control over the type of failures participants pictured and the way accessibility of positive and negative self-knowledge was measured.

Study 3

As did Study 2, Study 3 manipulated the perspective participants used to picture personal failure and measured the negativity of accessible self-knowledge. However, whereas in Study 2 participants nominated failures from their own lives to picture, in Study 3 all participants pictured the same hypothetical failure events that we specified. And whereas Study 2 measured the relative accessibility of positive and negative self-knowledge with a task that required participants to explicitly report information about themselves, Study 3 used an implicit measure (Dodgson & Wood, 1998, Experiment 2). Thus, we could isolate the effect of perspective and self-esteem on accessibility of self-knowledge apart from willingness to report it or knowledge that it was being assessed.

Despite these stricter controls in Study 3, we expected to replicate the pattern of results observed in Study 2. Specifically, lower self-esteem would be associated with greater negativity in accessible self-knowledge only when individuals pictured failure from the third-person perspective and not when they used the first-person. And we expected that only among LSEs would picturing failure from the third-person, rather than first-person, perspective cause accessible self-knowledge to become more negative. We expected no such effect of perspective among HSEs: The results of Study 2 suggested that negative information about the self remains relatively inaccessible among HSEs, regardless of imagery perspective.

Method

Participants. One hundred twenty-one undergraduates (60 women, 60 men, and 1 unidentified) participated for course credit.

Materials and procedure.

Overview. Online, before coming into the lab, participants completed the RSE and a self-attributes questionnaire that was used to identify their personal strengths, weaknesses, and neutral attributes. In the lab, participants sat in individual cubicles to complete two allegedly unrelated tasks on a computer. The first was an imagination task that manipulated the imagery perspective participants used to picture personal failure scenarios. The second was a response-time task that was used to measure the accessibility of the personal strengths, weaknesses, and neutral attributes that were identified in the online survey. The online self-attributes questionnaire and the response-time task were the same for all participants and were taken directly from Dodgson and Wood (1998, Experiment 2). The failure scenarios were adapted from the Test of Self-Conscious Affect (TOSCA; Tangney & Dearing, 2002) and the Test of Self-Conscious Affect for Adolescents (TOSCA-A; Tangney & Dearing, 2002). The only manipulation was that of imagery perspective, and participants were randomly assigned to condition, with the stipulation that the numbers per condition be approximately equal.

Online questionnaire: Measuring self-attributes and self-esteem. Upon signing up for the experiment, all participants received an e-mail with a link to a secure website where they could complete a modified version of the Self-Attributes Questionnaire (SAQ, Pelham & Swann, 1989) used by Dodgson and Wood (1998). For each of 12 attributes (e.g., intelligence, social skills,

4 We thank Philip Dodgson for sharing these materials with us.
athletic ability) participants used a 10-point fully labeled scale to indicate how their abilities compared with those of “other college students.” The endpoints of the scale were anchored at extremely below average and extremely above average.

Self-esteem was measured using the RSE, which participants completed either as part of the online questionnaire or as part of a mass pretesting survey administered to students in the participant pool at the beginning of the academic quarter. Self-esteem scores of participants in Study 3 ranged from 1.50 to 4.00, out of the possible 1 to 4, with a mean of 3.04 (SD = 0.49).

Lab task 1: Manipulating imagery perspective. There were two versions of this task, which differed only in the imagery perspective instructions. Participants were told that they would hear a variety of scenarios described through headphones, and they should follow specific instructions to picture each scenario as it was described. They then put on the headphones and heard the imagery instructions read aloud as they appeared on the screen. These instructions varied by condition and were the same as those in Study 2, except that they referenced a hypothetical future event rather than a past event (e.g., Libby et al., 2007). In both conditions instructions explained that participants should use the specified perspective to form as clear an image as possible using all of their senses until it felt real, and they should take as much time as they needed to form the image.

Participants then had the chance to familiarize themselves with the procedure by picturing an emotionally neutral practice scenario modeled on the practice scenario in the TOSCA-A (Tangney & Dearing, 2002). When participants had the image in mind from the specified perspective, they opened their eyes and advanced to the next screen, where they responded yes or no to a manipulation-check question, which varied by condition (first-person condition in italics; third-person condition in brackets): “As you’re picturing it right now, do you see the situation from the visual perspective you [an observer] would have if the scenario were actually taking place?” All participants passed this manipulation check.

Next, participants advanced to the main part of the imagination task, where they imagined themselves in 10 failure scenarios spanning the social, academic, and moral domains (e.g., injuring a friend, doing poorly on an exam, breaking a friend’s possession and hiding it). Each one was presented aloud through the headphones and began with instructions for participants to close their eyes and use the specified perspective to form a visual image. After the scenario was described and participants formed an image, they held that image in mind and answered two questions that helped to bolster the cover story that the imagination task served a purpose in and of itself. The first question also constituted a check that participants were imagining and not thinking about the scenario, which involved stating the scenario would serve a purpose in and of itself. The statement “all” was asked as an example, and instructions explained that even participants who were physically short could answer “yes,” because in certain contexts, such as in relation to children, “all” could logically be used to describe them. Instructions also directed participants to respond as quickly as possible without sacrificing accuracy. Participants were directed to place one finger over each response key to aid in making quick responses.

After completing 10 practice trials participants went on to complete the main task, which consisted of 239 trials. One hundred twenty of those trials involved statements that were related to the 12 attributes on the SAQ that participants had completed before taking part in the lab portion of the study. There were 10 words related to each of the attributes (e.g., words related to the SAQ attribute “intelligent” included smart, clever, wise). All of these words related to SAQ attributes could logically be used to describe any person given the criterion specified in the instructions. Thus, it was intended that all participants would answer “yes” to all of these items. The remaining 119 words were nontdescriptors that could not be logically used to describe any person (e.g., marshy, electronic), and thus, it was intended that all participants would answer “no” to all of these items.

Preparing data for analysis. We followed Dodgson and Wood’s (1998, Experiment 2) procedure to use participants’ response times on the 120 SAQ attribute trials and their self-ratings on the online SAQ to compute an index of accessibility for each SAQ attribute and to identify it as a strength, weakness, or neutral attribute. Excluding response times for items where participants gave incorrect responses (6% of trials) and response times that were more than three standard deviations away from the participant’s mean response time (2% of trials), we computed for each participant the average of the response times for the words associated with each SAQ attribute, thus creating an index of accessibility for each attribute for each participant. Attributes were then defined as personal strengths, weaknesses, or neutral for each participant idiosyncratically. On a within-participant basis, we standardized self-ratings on the 12 attributes of the SAQ. Attributes were considered strengths if they were rated at least .65 SDs above the participant’s mean, weaknesses if they were rated at least .65 SDs below the participant’s mean, and neutral if they were rated less than .65 SDs away from the participant’s mean in either direction.

Eleven participants were excluded from analyses because their personal strengths, weaknesses, and neutral attributes could not be identified—either because they did not complete the SAQ before coming into the lab (five in first-person and three in third-person) or because they provided the same ratings on all of the attributes (two in first-person and one in third-person). Eleven participants were excluded because of errors that occurred during the lab
Results and Discussion

We used multilevel modeling techniques to regress participants’ average response times for each SAQ attribute on attribute category (strengths vs. weakness vs. neutral, coded with weaknesses as the reference group), self-esteem (centered at the sample mean), imagery perspective (first-person = -1, third-person = 1), and all higher order interactions. Because the assignment of attributes to category was idiosyncratic, we also included attribute (e.g., intelligence, social skills, athletic ability) as a categorical covariate (effect coded). This allowed us to test our prediction about the interactive effect of self-esteem and perspective on the relative accessibility of strengths, weaknesses, and neutral attributes, independent of how response time varied according to the attributes themselves or the words used to assess them.

Does perspective determine the effect of self-esteem on relative negativity of accessible self-knowledge? Consistent with our hypothesis and the results of Study 2, whether self-esteem predicted the relative accessibility of strengths, weaknesses, and neutral attributes depended on imagery perspective, $F(2, 1070) = 5.17, p < .01$. Specifically, the relative accessibility of attributes depended on self-esteem when participants had pictured failure scenarios from the third-person perspective, $F(2, 1070) = 7.01, p < .001$, but not when they had used the first-person, $F(2, 1070) = .49$ (see Figure 4).

When participants had pictured failure scenarios from the third-person perspective, LSEs’ weaknesses were more accessible than their neutral attributes, $\gamma = 53.28, t(192) = 2.49, p < .05$, and marginally more accessible than their strengths, $\gamma = 39.63, t(192) = 1.67, p < .10$, whereas HSEs’ weaknesses were less accessible than their neutral attributes, $\gamma = -59.26, t(192) = 2.61, p < .01$, and no more accessible than their strengths, $\gamma = -27.38, t(192) = 1.08, p = .28$.

In contrast, when participants had pictured failure scenarios from the first-person perspective, no discernible self-esteem differences emerged. Weaknesses were less accessible than neutral attributes, $\gamma = -47.29, t(192) = 3.07, p < .01$, or strengths, $\gamma = -47.50, t(192) = 2.84, p < .01$, regardless of self-esteem level. Thus, self-esteem did not influence the relative accessibility of accessible self-knowledge directly, $F(1, 95) = .60$; the effect depended entirely on scenarios being pictured from the third-person perspective.

How does perspective influence the relative negativity of accessible self-knowledge among LSEs and HSEs? We also investigated the effects of perspective at low and high levels of self-esteem. As predicted, and consistent with results from Study 2, picturing failures from the third-person, rather than first-person, perspective increased the negativity of accessible self-knowledge among LSEs, $F(2, 192) = 8.02, p < .001$. Also consistent with the results of Study 2, among HSEs, weaknesses were less accessible than their neutral attributes, $\gamma = -45.34, t(192) = 2.75, p < .01$, and marginally less accessible than their strengths, $\gamma = -30.72, t(192) = 1.69, p = .09$, regardless of perspective. Thus, perspective did not influence the negativity of accessible self-knowledge directly, $F(1, 95) = .35$; the effect depended on participants’ self-esteem.

Summary. Previous research suggests that LSEs’ tendency to think negatively about the self in general on the basis of a specific failure reflects the influence of their self-concepts in defining the subjective impact of failure (Conner Christensen et al., 2003; Kernis et al., 1989). Studies 2 and 3 demonstrated that when individuals recalled and imagined failure, a self-esteem difference in this cognitive manifestation of overgeneralization emerged only when individuals pictured failure from the third-person perspective. These findings are consistent with the idea that people’s self-concepts shape reactions to events when they are pictured from the third-person perspective but not from the first-person. Also consistent with that conclusion, negative effects of third-person imagery emerged among LSEs only.

As did Studies 2 and 3, the remaining studies manipulated the perspective individuals used to picture personal failures. However, this time the dependent measures tapped into individuals’ feelings of shame to test whether perspective also has the power to determine whether low self-esteem predicts this emotional manifestation of overgeneralization.
Study 4

Study 4 manipulated the perspective that participants used to picture the failure scenarios from Study 3. However, instead of measuring the accessibility of positive and negative self-knowledge, we measured participants’ feelings of shame in response to each scenario. This allowed us to test for the causal role of perspective in producing the pattern of shame results observed in Study 1. Again, we predicted that LSEs would experience greater shame than HSEs only when scenarios were pictured from the third-person perspective. Further, we expected that to the extent perspective influenced shame at low and high levels of self-esteem, picturing failure from the third-person as opposed to first-person perspective would produce greater shame among LSEs and less shame among HSEs.

Method

Participants. Sixty-eight undergraduates (30 women and 38 men) participated for course credit. Two (one in each perspective condition) were excluded from analyses because they did not complete the online measure of self-esteem. All participants passed all imagery check questions. Thus, the final sample consisted of 66 participants (33 in each perspective condition).

Materials and procedure. As in Studies 2 and 3, self-esteem was measured online using the RSE before participants came into the lab. Scores ranged from 2.50 to 4.00, out of the possible 1 to 4, with a mean of 3.30 (SD = 0.44).

In the lab, participants sat in individual cubicles to complete a computerized imagination task that involved the same scenarios as the task in the first half of the lab session in Study 3. The imagination task in Study 4 followed the same procedure as the one in Study 3, with two exceptions. The first difference was a minor procedural detail: Instead of hearing the imagery perspective instructions and scenarios through headphones as in Study 3, participants in Study 4 heard these aspects of the procedure read aloud by the experimenter.

The second difference between the imagination task in Studies 3 and 4 was the important one. In both studies, for each failure scenario, participants formed an image from the specified perspective and rated this image on ease and vividness. However, in Study 4 participants also then responded to items that allowed us to assess their feelings of shame. The inventory from which the scenarios were adapted, the TOSCA, is designed specifically for this purpose. For each scenario, respondents on the TOSCA rate how likely they would be to have each of four reactions—one corresponds to a behavioral or emotional manifestation of shame; the others correspond to manifestations of guilt, detachment, and externalization. For example, for the scenario that involves doing poorly on an exam respondents rate how likely they would be to (a) “feel that you should have done better and should have studied more” (guilt); (b) “feel stupid” (shame); (c) “think, It’s only a test” (detachment); and (d) “think, ‘The teacher must have graded it wrong’” (externalization).

In the typical administration of the TOSCA, respondents are given no visualization instructions; in Study 4, participants rated the likelihood they would experience each reaction to each scenario as they pictured it from the specified perspective. The position of the shame item among the four responses was varied across scenarios in Study 4 according to the way the items appear in the original TOSCA scales. Participants responded to each item using a 5-point fully labeled scale anchored with endpoints not at all likely (coded as 1) and very likely (coded as 5). For each scenario, we computed a guilt-free shame score for each participant following the same procedure as in Study 1, predicting shame from guilt and using the standardized residuals as an index of guilt-free shame.

Results and Discussion

We predicted that lower self-esteem would be associated with greater shame only when failures were pictured from the third-person perspective, not from the first-person. To find out whether this predicted interaction of self-esteem and perspective would hold up reliably across the different scenarios, we used a mixed linear model to predict participants’ guilt-free shame scores on each scenario from self-esteem (centered at the sample mean), perspective (first-person = −1, third-person = 1), scenario (effect coded), and all higher order interactions.

Does perspective determine the effect of self-esteem on shame? The interaction between perspective and self-esteem fell just short of standard levels of significance, γ = −.25, t(62) = 1.88, p = .06, although Figure 5 shows that the results were clearly in line with our predictions and the results of Study 1. The more focused test of our predicted pattern corroborated this interpretation. Lower self-esteem was associated with greater shame only when scenarios were pictured from the third-person perspective, γ = −.60, t(62) = 3.03, p < .01, not from the first-person, γ = −.11, t(62) = 0.67, p = .50. Thus, low self-esteem was associated with greater shame on average, γ = −.36, t(62) = 2.75, p < .01, but this effect appeared to depend on failures being pictured from the third-person perspective.

How does perspective influence shame among LSEs and HSEs? We also investigated the effects of perspective at low and high levels of self-esteem. The patterns were consistent with our hypotheses, with the predicted values of shame being greater with third-person imagery among LSEs, γ = .10, t(62) = 1.22,

$p = .23$, and reduced among HSEs, $\gamma = -.11$, $t(62) = 1.47, p = .15$, although neither effect was significant.

Summary. As predicted, manipulating imagery perspective revealed its causal power in controlling self-esteem differences in shame upon picturing failure. Low self-esteem predicted greater shame only when individuals pictured the scenario from the third-person perspective, and not from the first-person. Further, the pattern of results was consistent with the idea that third-person imagery has the potential either to increase or to decrease shame, depending on self-esteem. In the final study, we tested the implications of these results for the shame that individuals experience when recalling real failures from their own lives, and we sought converging evidence for our interpretation.

Study 5

Study 5 manipulated the visual perspective participants used to picture a personal failure they recalled and measured the shame they felt as a result. We expected to replicate the pattern of results observed in Studies 1 and 4, where low self-esteem was associated with greater shame only when failures were pictured from the third-person perspective and not from the first-person. According to our account, this pattern reflects the influence of the self-concept in shaping the subjective meaning of life events when pictured from the third-person perspective. An alternative possibility is that the shame LSEs felt when picturing the failure from the third-person perspective was a reaction to the image of themselves, apart from the meaning of the event they were picturing. To distinguish between these two accounts, we included conditions in Study 5 in which participants pictured a success or a neutral incident. According to our account, the interactive effect of self-esteem and perspective on shame should be limited to picturing failure; the alternative would predict the interaction to emerge regardless of event.

Method

Participants. One hundred forty-three undergraduates (69 women, 73 men, and 1 unidentified) participated for course credit. Fifteen were excluded because they did not provide self-esteem data, and 11 were excluded because they either did not follow the instructions for the failure memory prompt ($n = 6$) or did not pass the perspective manipulation check (three in first-person and two in third-person).

Materials and procedure. As in Studies 2–4, self-esteem was measured online using the RSE scale before participants came into the lab. Scores ranged from 1.90 to 4.00, out of a possible 1 to 4, with a mean of 3.10 ($SD = 0.47$).

In the lab, participants sat in individual cubicles to complete a computerized questionnaire in which they visualized an event from their lives and then rated their current emotions. Participants were randomly assigned to one of six versions of this questionnaire, created by crossing manipulations of the event type (failure, success, or neutral) and imagery perspective (first-person or third-person).

In the failure conditions, participants received the same failure memory prompt as in Studies 1 and 2. In the success conditions, this memory prompt was modified to refer to a success, rather than a failure. Participants in the failure and success conditions then encountered the same imagery perspective manipulation as in Study 2, either directing them to use the first-person or third-person perspective (depending on condition) to picture the event they recalled. In the neutral conditions participants were also assigned to use either the first-person or third-person perspective to picture an incident in their lives. However, the incident was neutral: tying their shoe.

After participants pictured the specified event, they responded yes or no to the manipulation check question used in Study 2. Participants then completed the PANAS in the same format as in Study 1. The ashamed and guilty items were used to compute an index of guilt-free shame following the same procedure as in Studies 1 and 4.

At the end of the session, participants in the failure and success conditions described the event they recalled, provided the approximate date on which it occurred, and rated its valence on a 7-point fully labeled scale with endpoints anchored at extremely negative and extremely positive. The event descriptions and valence ratings were used as a check on the memory prompt manipulation.

Results and Discussion

We predicted that when participants pictured failure, perspective and self-esteem would interact to predict shame according to the pattern in Studies 1 and 4; further, this pattern would be unique to picturing failure. To test these hypotheses, we submitted the index of guilt-free shame to a linear regression model using self-esteem (centered at the sample mean), imagery perspective (first-person = −1, third-person = 1), and event type (dummy coded with failure as the reference group), along with all higher order interactions as predictors. We conducted follow-up analyses to test simple slopes at one standard deviation above and below the sample mean of self-esteem and within each of the manipulated conditions. Results provided strong support for our predictions.

Failure events. In the failure condition, perspective determined the effect of self-esteem on shame, $b = -1.29, \beta = -60$, $t(105) = 3.53, p < .01$ (see Figure 6). As predicted, lower self-esteem was associated with greater shame only when participants pictured failure from the third-person perspective, $b = -1.58, \beta = -.74, t(105) = 2.71, p < .01$, not the first-person, $b = 1.00, \beta = .47, t(105) = 2.26, p < .05$.

We also investigated the effects of perspective at low and high levels of self-esteem. As predicted, picturing failure from the third-person rather than first-person perspective increased shame among LSEs, $b = .70, \beta = .70, t(105) = 3.28, p < .01$, but decreased shame among HSEs, $b = -.51, \beta = .52, t(105) = 2.13, p < .05$. Thus, perspective did not influence shame directly, $b = .09, \beta = .09, t(105) = 0.63$; the effect depended on self-esteem.

Success and neutral events. Considering the failure condition in relation to the success and neutral conditions revealed that the predicted interactive effect of self-esteem and perspective was unique to failure, as predicted: versus success, $b = 1.33, \beta = .34, t(105) = 2.71, p < .01$; versus neutral, $b = 1.28, \beta = .38, t(105) = 2.70, p < .01$ (see Figure 6). Neither perspective, self-esteem, nor

5 We hesitate to offer an explanation for this unexpected reversal, given that no clear explanation presents itself and that the effect did not emerge in any of the other studies.
their interaction had any discernable effects on shame in the success or neutral conditions (lsl < .9, ps > .35). These results are consistent with the idea that the results in the failure conditions reflect the effect of perspective on the role of the self-concept in shaping reactions to failure, rather than an effect of perspective on eliciting self-esteem differences in self-feelings apart from failure.

General Discussion

The present studies demonstrate that when individuals mentally image failures—real or hypothetical—the visual perspective they use determines whether LSEs are prone to overgeneralization. Study 1 demonstrated that the more third-person imagery people spontaneously experienced as they pictured real past failures in their lives, the more that low self-esteem put them at risk for overgeneralization. Further, third-person imagery was associated with greater overgeneralization among LSEs but less among HSEs. The remaining studies manipulated perspective to show its causal influence in producing these patterns. Table 1 summarizes the results. Picturing failure from the third-person perspective caused LSEs to overgeneralize more than HSEs, both in terms of self-esteem and greater shame from the first-person perspective. Further, among LSEs, picturing failure from the third-person, as opposed to first-person, perspective produced greater negativity in accessible self-knowledge and greater shame. Among HSEs, no such detrimental effects of third-person imagery occurred—only beneficial effects. Among HSEs, picturing failure from the third-person as opposed to first-person perspective reduced shame. These findings help to distinguish

Table 1

<table>
<thead>
<tr>
<th>Effect</th>
<th>Average effect size r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative negativity of accessible self-knowledgea</td>
<td></td>
</tr>
<tr>
<td>Perspective interacts with self-esteem</td>
<td>.15**</td>
</tr>
<tr>
<td>Effect of self-esteem</td>
<td></td>
</tr>
<tr>
<td>with third-person: LSE \rightarrow greater negativity</td>
<td>.20***</td>
</tr>
<tr>
<td>with first-person: ns</td>
<td>.01</td>
</tr>
<tr>
<td>Effect of perspective</td>
<td></td>
</tr>
<tr>
<td>with LSE: third-person \rightarrow greater negativity</td>
<td>.16**</td>
</tr>
<tr>
<td>with HSE: ns</td>
<td>.06</td>
</tr>
<tr>
<td>Shameb</td>
<td></td>
</tr>
<tr>
<td>Perspective interacts with self-esteem</td>
<td>.36***</td>
</tr>
<tr>
<td>Effect of self-esteem</td>
<td></td>
</tr>
<tr>
<td>with third-person: LSE \rightarrow greater shame</td>
<td>.29***</td>
</tr>
<tr>
<td>with first-person: ns</td>
<td>-.11</td>
</tr>
<tr>
<td>Effect of perspective</td>
<td></td>
</tr>
<tr>
<td>with LSE: third-person \rightarrow greater shame</td>
<td>.25***</td>
</tr>
<tr>
<td>with HSE: third-person \rightarrow less shame</td>
<td>.20*</td>
</tr>
</tbody>
</table>

Note. LSE = low self-esteem; HSE = high self-esteem. Average effect sizes are weighted for sample sizes (Hedges & Olkin, 1985). Before computing the average, effect sizes in each study were assigned a positive sign if the effect was in the predicted direction and a negative sign if it was not. In the case of the effect of self-esteem with first-person imagery, we expected no significant effect and thus arbitrarily assigned a positive sign when LSE was associated with greater negativity/shame and a negative sign when HSE was associated with less negativity/shame. Significance levels represent combined ps, weighted for sample sizes (Stouffer, Suchman, DeVinney, Star, & Williams, 1949).

a Relative negativity of accessible self-knowledge reflects the accessibility of negative, relative to positive (Study 2) or relative to positive and neutral (Study 3), self-knowledge. Thus, the interaction of self-esteem and perspective on relative negativity corresponds to the Self-Esteem \times Perspective \times Self-Knowledge valence interaction terms in Studies 2 and 3; the effect of self-esteem with each perspective corresponds to the Self-Esteem \times Self-Knowledge valence interaction terms at each level of the perspective manipulation; the effect of perspective with high and low self-esteem corresponds to the Perspective \times Self-Knowledge valence interaction terms at 1 SD above and below the sample mean of self-esteem.

b Shame was indexed, apart from guilt, by the residuals left after predicting shame responses from guilt responses (Tangney & Dearing, 2002). The interaction of self-esteem and perspective on shame corresponds to the Self-Esteem \times Perspective interaction terms in Studies 4 and 5; the effect of self-esteem with each perspective corresponds to the self-esteem terms at each level of the perspective manipulation; the effect of perspective with high and low self-esteem corresponds to the perspective term at 1 SD above and below the sample means of self-esteem.

$p < .05$. $^{**} p < .01$. $^{***} p < .001$. $^{****} p < .0001$.

Figure 6. Guilt-free shame (standardized residuals) depending on self-esteem, imagery perspective, and event-type in Study 5. Values are plotted at 1 SD above and below the sample mean of self-esteem.
The Function of Imagery Perspective

Previous research suggests that the self-concepts of LSEs guide their processing of failure in ways that promote overgeneralization, maximizing the failure’s negative impact on the self more broadly. The self-concepts of HSEs guide their processing of failure in ways that minimize its negative impact on the self more broadly (Conner Christensen et al., 2003; Kernis et al., 1989). The fact that this self-esteem difference emerged in the present studies only when individuals pictured failure from the third-person, and not first-person, perspective provides insight into the function of imagery perspective in representing life events.

By some accounts, imagery perspective functions to determine whether people interpret events in an involved, emotional manner from the first-person perspective versus a detached, unemotional manner from the third-person perspective (e.g., Kenny et al., 2009; McIsaac & Eich, 2004; Santitoso, 2008; Williams & Moulds, 2008). However, in the present studies, individuals’ self-beliefs (as indexed by their self-esteem) biased their reactions to failure more from the third-person than from the first-person perspective, not less, as might be expected by a detachment account. In addition, imagery perspective did not influence the emotional experience of shame directly; the effect depended on self-esteem. Whereas HSEs felt less shame with third-person than first-person imagery, LSEs felt more.

By a different account, imagery perspective functions to define the level of meaning in event representations (Libby & Eibach, 2011b). According to this account, picturing events from the first-person perspective involves a bottom-up style of making meaning in which people incorporate information about the concrete features of the pictured situation and define the event in terms of these constituent aspects. Picturing events from the third-person perspective involves a top-down style of making meaning in which people integrate the pictured event with a broader context and define the event in terms of that abstract meaning. The present findings support and further specify this account, highlighting the potential utility of imagery perspective as a methodological tool in studying social cognitive processes.

Imagery perspective moderates the effect of the self-concept on reactions to life events. Consistent with the idea that imagery perspective functions to define the level of meaning in event representations, picturing actions and events from the third-person, rather than first-person, perspective causes people to construe those actions and events more abstractly (Libby et al., 2009; Vasquez & Buehler, 2007). But with any event, abstraction can occur on a variety of dimensions, with divergent implications (Vallacher & Wegner, 1985). For example, a failure could be construed abstractly as “a learning experience” or as “a confirmation of inadequacies.” The fact that the effect of perspective on overgeneralization in the present studies depended on self-esteem suggests that the pictured event, alone, does not shape abstraction. If it did, then third-person imagery should have uniformly produced greater overgeneralization and greater shame. And, if third-person imagery simply activated an abstract evaluation of the self, then LSEs should have felt more shame with third-person than first-person imagery, regardless of what event they pictured. However, LSEs felt more shame with third-person than first-person imagery only when they pictured failure. The fact that self-esteem and perspective interacted, for failure events in particular, suggests that the abstraction that has been demonstrated to occur when people picture life events from the third-person perspective (Libby et al., 2009; Vasquez & Buehler, 2007) is shaped by the self-concept. Thus, as we hypothesize, third-person imagery functions to represent life events in terms of the conceptual “me.” This means that, from the third-person perspective, the event is not necessarily understood as reflective of the self’s internal disposition, as some have suggested (e.g., Frank & Gilovich, 1989). Rather, the event is understood in terms of the broader meaning specified by knowledge structures and motivations that define the self-concept, and this could lead to more or less dispositional attributions, depending on the contents of the person’s self-concept.

Although self-esteem is a particularly relevant aspect of the self-concept with regard to shaping responses to failure, other aspects of the self-concept are relevant in shaping responses to other types of events. For example, internal working models of attachment have been shown to predict reactions to relationship events (Collins, Ford, Guichard, & Allard, 2006), and self-theories of change and stability have been shown to predict judgments of change and stability in the self since an event occurred (Ross, 1989). In both of these contexts, these aspects of the self-concept have been found to influence responses to events when they are pictured from the third-person, but not first-person, perspective (Libby et al., 2005; Marigold, Eibach, Libby, Ross, & Holmes, 2010)—consistent with the effects observed for self-esteem in the present studies. Thus, the present findings contribute to establishing that third-person imagery functions to represent life events in terms of their subjective meaning in the context of one’s life more broadly.

Imagery perspective moderates the effect of top-down versus bottom-up influences. Common to many existing accounts of how imagery perspective functions in memory is an assumption that picturing events from the first-person perspective promotes reliving of past emotions (e.g., Kenny et al., 2009; McIsaac & Eich, 2004; Nigro & Neisser, 1983; J. A. Robinson & Swanson, 1993). However, in the studies reported here the patterns that are typically observed in online reactions to failure (e.g., Brown & Marshall, 2001; Dodgson & Wood, 1998; Kernis et al., 1989) are the ones that we observed when participants pictured failure from the third-person perspective, not first-person. The idea that first-person imagery promotes reliving implies an assumption that first-person imagery should produce a more veridical replay of past events. This is intuitively plausible, given that one’s original experience of the event was necessarily encoded from the first-person visual perspective. However, given that memory is a reconstructive process, rather than a replay of the past (Bartlett, 1932; Neisser, 1967), it may be more appropriate to consider how perspective would influence the process by which people reconstruct events, rather than only to consider the match between the visual perspective at encoding and retrieval.
In the online experience of events, both top-down and bottom-up influences can operate to determine reactions (e.g., Bruner & Postman, 1949; Farb et al., 2007; Ochsner, 2007). The present findings suggest that imagery perspective may determine the extent to which each influence contributes as people mentally simulate events in memory (and imagination), with top-down influences exerting a stronger influence from the third-person than from the first-person perspective and bottom-up influences exerting a stronger influence from the first-person than from the third-person perspective (also see Libby, Valent, Hines, & Eibach, 2011). By this account, first-person imagery may indeed enhance the reliving of aspects of experience that were driven bottom-up by features of the event itself, but third-person imagery may enhance reliving of aspects of experience that reflect the top-down influence of the self-concept.

Apart from whether the reactions that emerged with third-person imagery in the present studies reflect a sense of reliving, the results suggest that manipulating imagery perspective in mental simulation could be a methodological tool with broad applicability. The question of how aspects of the self-concept shape judgment and emotion is of interest not only to those studying self-esteem but also to those studying a variety of self-beliefs (e.g., Dweck & Grant, 2008; Ehringer & Dunning, 2003; Ehringer, Gilovich, & Ross, 2005; Pronin, Gilovich, & Ross, 2004; M. D. Robinson & Clore, 2002; Ross, 1989). Together with the findings mentioned earlier, the present results suggest the potential utility of imagery perspective manipulations for understanding the role of the self-concept in a wide range of social psychological phenomena.

Relation to Existing Research on Self-Esteem

The present findings are directly relevant to understanding self-esteem differences in response to failure. The idea that subjective perceptions of failure (apart from objective features of the event) are crucial in explaining LSEs’ proneness to overgeneralization comes from research that has focused on immediate reactions to failures in the present (e.g., Brown & Marshall, 2001; Dodgson & Wood, 1998; Kernis et al., 1989). The results of the studies we report here suggest that subjective perceptions also play a key role in explaining reactions to recalled and imagined failure (also see Conner Christensen et al., 2003). Simply varying the visual perspective from which participants pictured failure was enough to turn typical self-esteem differences on (third-person) or off (first-person).

It would be intuitive to hypothesize that the effects of self-esteem on self-knowledge accessibility in the present studies accounted for the effects of self-esteem on shame. However, evidence suggests that self-esteem can affect self-feelings directly, rather than by means of activating specific self-knowledge that supports those feelings (Dutton & Brown, 1997). At the same time, as mentioned earlier, there is evidence that self-esteem can influence self-thoughts in response to failure, thus suggesting that the two effects are independent. This might explain why we found third-person imagery to reduce shame among HSEs, even though we found no effect of imagery perspective on the negativity of HSEs’ accessible self-knowledge (see Table 1). This difference could be interpreted as consistent with the idea that cognitive and affective manifestations of overgeneralization can operate independently, at least for HSEs.

What is central to the purpose of the present experiments is the differential effect of self-esteem with third-person versus first-person imagery. Both components of overgeneralization—self-thoughts and self-feelings—have been proposed to reflect a top-down influence of self-esteem as an element of the self-concept. If third-person imagery functions to integrate specific events with the self-concept, then the previously documented effects of self-esteem on overgeneralization should show up only when failures are pictured from the third-person and not from the first-person, a pattern that emerged consistently and reliably across all five studies reported here. Thus, these findings provide converging evidence for the role of subjective construal processes in accounting for self-esteem differences in reactions to failure.

Relation to Existing Research on Shame

Subjective construal processes have also been proposed as key in understanding the emotion of shame: Feelings of shame appear to be determined not by objective features of actions and events (e.g., type of behavior or presence of others) but, rather, by subjective perceptions of them (Tangney, Miller, Flicker, & Barlow, 1996; Tracy & Robins, 2004). The present findings are consistent with this conclusion, demonstrating that shame varied according to an interaction between self-esteem and the way people pictured their failures, apart from objectively specified features of those failure events.

Shame has been characterized as a negative evaluation of the self as an entity that transcends any given occasion (e.g., Lewis, 1971; Tangney & Dearing, 2002). Thus, shame is a self-conscious emotion in the sense that it is an emotional reaction to the self, rather than to the environment (Tracy & Robins, 2004). The present results highlight, however, that shame is not a necessary outcome of focusing (visual) attention on the self, even if one is engaged in a potentially shame-worthy action. There was no hint of a main effect of perspective on shame in any of the studies reported here. Third-person imagery increased shame only among LSEs picturing failure. Perspective had no effect on shame when individuals pictured success or neutral incidents, and third-person imagery actually reduced shame among HSEs picturing failure. Thus, the self-concept appears to be an important factor in shaping the subjective construal processes underlying shame.

Imagery Perspective, Abstraction, and Well-being

It has often been assumed that, to the extent imagery perspective plays a role in coping with negative events, it is because third-person imagery reduces the personal connection to events and/or the emotion associated with recall, thus promoting avoidance and dissociation (Kenny et al., 2009; McIsaac & Eich, 2004; Williams & Moulds, 2008) or facilitating a “cool” rational reinterpretation (Kross et al., 2005). The present experiments suggest strong caution against assuming that imagery perspective directly influences coping. The fact that imagery perspective had opposite effects on shame depending on self-esteem is particularly relevant in this regard: Shame has been implicated as an impediment to adaptive coping because it promotes withdrawal, aggression, and anger (Tangney, Wagner, & Gramzow, 1992). Third-person imagery decreased shame among HSEs but increased it among LSEs.
The present results do not rule out the possibility that third-person imagery could facilitate a “cool,” rational reinterpretation of negative events, even among those with less positive self-views, provided that instructions to use third-person imagery are accompanied by instructions to personally distance one’s self from a recalled event while analyzing it (as is the case of “self-distancing” manipulations; e.g., Kross & Ayduk, 2009). However, the present results demonstrate that simply leading people to picture an event from the third-person visual perspective, without any added interpretive frame, leads people to draw on their existing self-views to make meaning of the event. This can increase or decrease the negative impact of thinking about that event, depending on the nature of those self-views.

The present experiments demonstrated this pattern when individuals pictured failure, and we expect that future research will show that imagery perspective plays the same role in shaping responses to other types of negative events, such as trauma. Suggestive evidence comes from a study of intrusive memories, a symptom of post-traumatic stress disorder (Williams & Moulds, 2008). Results revealed that spontaneous use of third-person imagery was associated with maladaptive coping only for high dysphoric individuals—individuals who, like those with low self-esteem, tend to apply self-defeating interpretive frameworks to make meaning of life events (Beck, Rush, Shaw, & Emery, 1979; Lyubomirsky & Nolen-Hoeksema, 1995).

Given that third-person imagery promotes abstract construal of actions and events (Libby et al., 2009; Vasquez & Buehler, 2007), research on the role of abstraction in coping is relevant in considering the findings we report here. Ruminination is a manner of abstractly analyzing negative events that has been shown to interfere with adaptive coping (e.g., Nolen-Hoeksema, Parker, & Larson, 1994). Abstraction manipulations are particularly harmful for people who tend chronically to engage in this style of thinking (e.g., Moberly & Watkins, 2006; Watkins, 2004). Given that the tendency to ruminate is likely associated with low self-esteem (Lyubomirsky, Tucker, Caldwell, & Berg, 1999), it is possible that a tendency to ruminate explains why third-person imagery was more harmful than first-person imagery for LSEs in our studies. This would suggest a mechanism by which the self-concepts of LSEs guide the processes they use to ascribe meaning to negative life events from the third-person perspective.

The link between perspective and abstraction also suggests implications of the present findings for assessing the role of abstraction in coping. Just as third-person imagery is unlikely to be uniformly helpful or hurtful for coping, abstraction should not be either. Rather, the effect should depend on the framework that guides abstraction. Thus, we predict that results suggesting overall positive effects of abstraction on coping (e.g., Updegraff, Emanuel, Suh, & Gallagher, 2010) may be driven by general tendencies for individuals to apply adaptive meaning-making strategies and that, if variation on this dimension were taken into account, an interaction should emerge. Alternatively, manipulations of abstraction may inadvertently specify a positive framework for abstraction, and positive effects of such manipulations (e.g., Marigold, Holmes, & Ross, 2007) may depend on this feature (Kille, Eibach, Wood, & Holmes, 2011).

Conclusion

Mishaps are like knives, that either serve us or cut us, as we grasp them by the blade or the handle.

—James Russell Lowell

In the broadest sense, the present research speaks to the role of subjective construal in psychological processes (Asch, 1948; Bruner, 1957; Griffin & Ross, 1991). Like a knife that can be grasped by the blade or the handle, a failure can be thought about in ways that increase or decrease its negative impact. The visual perspective people use to picture failures determines the role of the self-concept in shaping reactions to those events. In this way, imagery perspective and self-esteem interact to guide one’s grasp of failures to determine whether they have the power to cut into well-being.

References

Moulton, S. T., & Kosslyn, S. M. (2009). Imagining predictions: Mental

Received September 22, 2010
Revision received June 8, 2011
Accepted July 18, 2011