
Journal of Experimental Psychology: Copyright 1996 by the American Psychological Association, Inc. 
Human Perception and Performance 0096-1523/96/$3.00 
1996, Vol. 22, No. 4, 930-944 

Perception of Local Three-Dimensional Shape 

Flip Phil l ips  and J a m e s  T. T o d d  
The Ohio State University 

The authors present a series of 4 experiments designed to test the ability to perceive local 
shape information. Observers were presented with various smoothly varying 3-dimensional 
surfaces where they reported shape index and sign of Gaussian curvature at several probe 
locations. Results show that observers are poor at making judgments based on these local 
measures, especially when the region surrounding the local point is restricted or manipulated 
to make it noncoherent. Shape index judgments required at least 2 ° of context surrounding the 
probe location, and performance on sign of Gaussian curvature judgments deteriorated as the 
contextual information was restricted as well. 

In informal conversation we often refer to the configura- 
tion of an object's surfaces as its form or shape. A basket- 
ball, a chair, a human body, or a cloud, each have a distinct 
structure that allows us to differentiate between them. Shape 
is typically distinct from the substance of which the object 
is made, but often times, the substance itself acts as a 
determinant of the formal structure of the resulting object. 
We do not have to necessarily know what substance an 
object is made of to identify it. Indeed, we can go even 
further and reliably infer shape from line drawings or pho- 
tographs of an object. Caricatures of people and objects still 
look like the things they represent, even though the rela- 
tionships and configurations of their constituent pieces may 
vary wildly from the original to the caricature. When we see 
an illustration of a loaf of bread, we have no trouble under- 
standing that it is a representation of a loaf-sized three- 
dimensional solid and not an image of a small two-dimen- 
sional object, even though the representation may only be a 
two-inch black on white line drawing. 

We often refer to shapes analogically, such as a highway 
exchange being a "cloverleaf," a person's figure as being 
"pear shaped," or a golf hole as being a "dog leg." When we 
do this, we are describing some global, intuitive, and infor- 
mal characteristic of that object. There is seemingly some- 
thing atomic or primitive about these types of shapes. We 
can treat them as a sort of verbal lowest common denomi- 
nator. However, these primitive descriptions provide us 
only with nominal distinctions between different shapes. 

Given this, what might constitute a good representational 
strategy for solid shape? One approach that has received a 
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large amount of attention is based on the occlusion contours 
of an object or its parts. These approaches rely on the 
interpretation of the projected two-dimensional sharp edges 
and outlines of an object, often times depending on their 
invariance or nonaccidental properties. In one such ap- 
proach, Biederman's theory of recognition by components 
(1987), the nonaccidental qualities of the shape profiles and 
their contained edges allow each to be uniquely identifiable, 
thus, yielding a small set of primitive parts from which more 
complex objects can be created. Other similar approaches 
include Koenderink (1984a), Blum (1973), Hoffman and 
Richards (1985), and Richards, Koenderink, and Hoffman 
(1987). 

Clearly, there is more to an object's shape than is defined 
by its edges. The interior of the object also consists of 
additional information in the form of smooth surface vari- 
ations or textures. For example, rumpled cloth and natural 
landscapes defy the occlusion models because they are not 
easily described by a set of convex occlusion contours. 
Therefore, the internal smooth structure of objects require 
some other form of representation. 

Gibson (1950) suggested that a local surface region can 
be described by a small set of phenomenal primitives, such 
as depth and orientation relative to the observer, and their 
gradients across the surface and scene. Later, Man" and 
Nishihara (1978) adopted this idea in their 2I/z D sketch. 
This type of representation was a natural glue for their 
model because it derives itseff from an image that does not 
contain any information about surfaces behind occlusions, 
as does the retinal image. 

The Marr and Nishiharu (1978) model uses depths and 
orientations relative to some observer as the regional 
quanta. It is important to note that if the observer or the 
object under scrutiny moves, an entirely new set of relative 
depths and orientations results. Using these primitives 
would result in a rather cumbersome representational strat- 
egy because it would require representations for all possible 
orientations of an object to recognize it. 

A more flexible set of primitives would be invariant over 
the orientation of the object, resulting in a more economical 
set of representations. One primitive that meets this criteria 
is the intrinsic curvature of a surface, because it does not 
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vary relative to the observer. To better understand what we 
mean by curvature, we can examine some of the concepts of 
differential geometry and their applicability to our psycho- 
physical problem. 

For any surface there exists a maximum and minimum 
normal curvature at any given point, which are called the 
principal curvatures (typically referred to as ~1 and K2) and 
the corresponding directions of these curvatures are called 
the principal directions. 

One special feature of the principal directions is that they 
are always orthogonal. In Figure 1 we can see the two 
principal directions labeled as C 1 and C2 along with a cross 
section of the patch showing C 1 and its curvature K 1. 

There are several convenient and intuitive ways to com- 
bine these two curvatures into a higher order measure. One 
potentially useful metric is the shape operator of modem 
differential geometry, also known as the Second Fundamen- 
tal Form, H(*,  •), which measures how a surface bends in 
space by estimating how the surface normal changes from 
point to point. Also useful is the surface's normal curvature, 
which is the curvature of a normal section of a surface. It is 
a real-valued function similar to the shape operator, with the 
added benefit being that it defines the curvature in a given 
direction (Gray, 1993; Koenderink, 1989; Lipshutz, 1969). 
These curvatures range from negative or concave values to 
positive or convex values. As we will see, we can make this 
class of measurement more intuitive and perhaps more 
useful for experimentation purposes. 

As Equation 1 shows, the product of the two principal 
curvatures yields the Gaussian curvature at point p, 

K. = Kt" Kz. (1) 

The sign of the Gaussian curvature tells us if a surface's 
principal directions are curving in the same direction (pos- 
itive, as in a bump or a dimple) or in different directions 
(negative, like a saddle surface); see Hilbert and Cohn- 
Vossen, 1952. The Gaussian curvature is also available as 
the determinant of the matrix yielded by the shape operator 
(see Figure 2). 

Koenderink (1989) has taken these measures one step 

further by defining an intuitive, higher order single-valued 
function that represents the scale invariant local structure 
along with a companion function, which contains the scale- 
sensitive information. These are his shape index and curved- 
ness, respectively. Both scales are one dimensional. Their 
inputs (principal curvatures) are defined locally and, there- 
fore, so are the resultant operators. 

T h e  shape index ranges on the interval [ - 1 ,  1] with 
critical points occurring at the endpoints, -+0.5, and 0 (see 
Figure 3). Note that this yields a potentially nominal scale 
based on the two principal directions. The critical points 
conveniently separate the scale into four distinct regions. 

For example, for the 0.0 shape index case, one principal 
direction of curvature is positive and the other negative, 
yielding a saddle. The two curvatures are said to be anti- 
clastic. The resulting sign of the Gaussian curvature at this 
point will be negative because the two curvatures have 
opposite signs. In the + 1.0 case, both principal directions 
have positive curvature yielding a bump. These curvatures 
are said to be synclastic. The Ganssian curvature in this ease 
is positive because the curvatures are of the same sign. 
Finally, in the _+0.5 cases, one principal curvature is either 
positive or negative, whereas there is zero curvature in the 
other direction. These curvatures are monoclastic and the 
resulting Ganssian curvature is zero because one of the 
curvatures is zero. 

The shape index is insensitive to scale, and it only dis- 
criminates on the basis of directions of curvatures. Curved- 
ness discriminates on the basis of the magnitudes of these 
curvatures with its value ranging from zero, for a planar 
surface, to infinity, for a sharp point. In Figure 4 we show 
a series of patches in which the shape index is a constant 
1.0, whereas the curvedness ranges from 0.0 to 5.0. 

We can consolidate our illustration of these two measures 
into one graph by plotting them as a polar function of the 
two principal curvatures (see Figure 5). 

In this illustration, the shape index increases as a function 
of the angle from - 1.0 in the positive-positive quadrant to 
1.0 in the negative-negative quadrant, and the curvedness 

Figure 1. Principal directions and curvatures at point p. 
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Figure 2. Gaussian curvature. 

increases from 0.0 at the origin, increasing toward infinity 
along the radial axis. 

In more formal terms, Koenderink's shape index (1989) is 
defined as a function of the principal curvatures K 1 and K 2 
as 

- - atan - -  , (2) S ( ~ , ~ 2 )  = ~" \ ~ 1  - K2/ 

where Kl>~: 2. The scale sensitive function curvedness is 
then defined as 

C(K1,K2) ~--- ~ 2  
+ K2 2 
2 (3) 

Regardless of whatever shape is, we know that a large 
sphere and a small sphere are of the same shape. Even more 
complicated shapes retain this scale insensitivity, as in the 
dog-leg example above. This isomorphic quality is true, not 
only of scale, but of orientation and the local configuration 
of the objects as well. However, the nominal information 
provides us with too little information. When we say an 
object is a ball, we might mean a baseball or a football. 
Whereas both of these shapes are of the same genus, they 
are of different shapes. Would it be possible for us to use 
some sort of measure that preserves our more intuitive idea 
of shape and also provides us with something more than just 
a nominal scale? 

Previous studies in shape perception have utilized the 
shape index in several different contexts; shape-from-stereo 
(de Vries, 1993), shape-from-motion-parallax (van Damme, 
Oosterhoff, & van de Grind, 1994; van Damme & van de 
Grind, 1993), and shape-from-shading (Erens, 1993a; 

1993b). These studies showed that the shape index and 
curvedness were appropriate and reliable for use in psycho- 
physical experimentation. In each of these experiments, 
observers were presented with smooth quadric surfaces of 
the form z(x, y) = 1/2 (K z x 2 + r 2 y2). This yields surfaces 
in which shape index and curvedness varied smoothly over 
the extent of the object. 

In an extension of these experiments, our experiments 
were designed to measure an observer's ability to judge 
shape index and Gaussian curvature utilizing more irregular 
stimuli to better simulate objects in the observer's natural 
world. Our question becomes: Is it possible for the observ- 
ers to successfully judge local curvatures, and in so doing, 
categorize its local shape? 

It is obvious that we need some amount of coherent area 
surrounding a purely local probe point to estimate the local 
shape, but how much of it do we actually need? Can we 
modify the statistical nature of this context and still obtain 
accurate estimations of the shape? In the four experiments 
that follow, we attempt to uncover this, along with what 
other types of information observers are utilizing to judge 
solid shape. 

In these experiments, we investigate the ability of viewers 
to discriminate two local properties of a surface, Gaussian 
curvature and shape index, when the context of the local 
information is restricted or varied through the use of turbu- 
lent self-similar surfaces. 

Exper iment  1 

The initial experiment was an attempt to replicate the 
results of prior studies (de Vries, 1993; Erens, 1993a; van 

Figure 3. Shape index critical points. 



PERCEPTION OF 3D SHAPE 933 

Figure 4. Magnitude of curvedness. 

D a m m e  et al., 1994; van  D a m m e  & van  de Grind,  1993). In  
addition, we also chose to vary the amoun t  of  contextual  
informat ion  avai lable in an at tempt to observe its effect on  
the resul t ing judgments .  

M e ~ o d  

Apparatus. All stimuli were computer-generated surfaces, dis- 
played on a Silicon Graphics Crimson workstation. In all presen- 
tations, the surfaces were shown with texture, shading, motion, and 
in stereo. Viewing distance was a constant 57.4 cm and the entire 
display screen subtended an angle of 34 ° horizontally and 28 ° 
vertically. The experiments took place in a darkened room with a 
chin rest used to maintain a constant viewing distance. Responses 
were provided using the mouse buttons. 

Stimuli. The surfaces used as stimuli in this experiment were 
simple quadrics defined by the Monge formulation, 

1 
Z(x,y) = ~(Klx 2 + K2y2), (4) 

where K a and K 2 are the principal curvatures of the surface under 
examination (see Figure 6). 

These test patches were a circular portion of the surface defined 
in Equation 4, centered about the origin. To reduce possible 
contour cues from the edge of the patch, they were smoothly 

blended into a flat plane. To simplify the blending, the surface 
patch defined in Equation 4 can be represented in polar form as 
shown in Equation 5 (note that r, not 0, corresponds to visual 
angle). Over the first 2 ° of the stimulus, the surface is defined 
entirely by this equation. After 3 °, the stimulus is flat and is, z 
therefore, defined as z~t  (r, 0) = 0. 

1 
z(r,O) = ~ ( r :¥os20  + K:2sin20). (5) 

Between 2 ° and 3 ° the surface patch was blended with the flat 
patch. This was accomplished by scaling the surface patch as a 
function of the radius, r, using a Hermlte interpolation shown in 
Equation 6 (Rogers & Adams, 1990), 

h(r) = 3r 2 - 2r 3. (6) 

This function is defined on the range [0,1]. Therefore, the piece- 
wise linear interpolation function shown in Equation 7 is used to 
bring the radius onto that interval. 

IOr___ r<min  

t(r,min,max) = rain rain <-- r <--- max. (7) 

[ 7 - m i n  r > m a x  

The resulting surface equation for the 2 ° to 3 ° interpolation range 
in these experiments is, therefore, 

z'(r,O) = z(r,O)" {1 - hit(r,2,3)]}. (8) 

The stimulus patches were represented computationally as polyg- 
onal meshes. To eliminate possible orientation artifacts or cues, the 
shape patches were arbitrarily rotated within the embedded sur- 
face, and the edges of the patch were randomly perturbed for each 
trial. The probe point was always at the center of the patch, at a 
constant distance from the viewer, and was indicated by a small 
blue dot. 

A simple, untextured, example surface of the type used in this 

Figure 5. The big picture of shape (S) index and curvedness (C). Figure 6. Example surfaces for shape index of 1.0. 
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experiment is shown in Figure 6, and a stereogram of an actual 
stimulus with a gravel-like texture is show in Figure 7. (The actual 
stimuli had a colored texture,) 

Observers. The displays were presented to four observers, all 
members of the research group that performed the experiments. All 
observers had normal or corrected-to-normal vision. 

Procedure. On each trial, the observer was presented with a 
pair of three-dimensional surface stimuli. The task on each trial 
was to indicate the stimulus containing a predefined standard by 
pressing one of two mouse buttons. Observers were permitted to 
view the stimuli as long as necessary to make their decision. 
Feedback was provided in the form of a beep for correct answers. 

A 5 X 3, shape index by patch radius, within-subjects factorial 
design was used. The shape index was probed at the five critical 
locations: -1.0, -0.5, 0.0, 0.5, and 1.0 (see Figure 3), while 
curvedness was fixed at a constant 0.5 cm -1. The target patches 
varied in radius between 1.0, 1.5, and 2.0 cm, subtending visual 
angles of 2 °, 3 °, and 4 °, respectively. Because the curvedness was 
held constant, the modifications of the patch radius only changed 
the amount of the patch seen. It did not change the overall scale of 
the feature under investigation. 

In Figure 8 we see a cross section of a convex bump (with a 
shape index of 1.0), which shows an example of the amount of the 
patch that is revealed at each radius. At larger radii, and thus, 
visual angle, much more of the patch is presented. 

Mathematica (Wolfram, 1994) was used to determine inverse 
solutions for the principal curvatures from the associated curved- 
hess and shape index. These solutions were then utilized to calcu- 
late the probe patches for any given curvedness or shape index 
values. 

All stimuli were presented initially in a frontoparallel orientation 
such that the normal at the probe point pointed in the direction of 
the line of sight. Each trial consisted of the side-by-side presenta- 
tion of two stimuli, 15 cm apart center to center, each rotating 
about its own central vertical axis through an angular extent of 
±12 ° . In each trial, one of the two stimuli was the target patch, 
whereas the other was a test patch whose shape index varied from 
trial to triai. The ordering of the two patches was varied randomly 
from trial to trial. An adaptive staircase was used that would yield 
a 75% discrimination threshold. A correct response caused the 
difference between the shape indices of the two patches to be 
decreased by one step of a predefined step size, whereas incorrect 
responses caused the difference to be increased by three steps. Ten 
reversals of direction were averaged to yield the threshold. At the 
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Figure 8. 

3 

Amount of patch visible as a function of radius. 

first, third, and seventh reversal, the step sizes used above were 
halved. Four runs of 25 shapes at each level were performed by 
each observer, yielding 100 measurements of each shape. 

All observers were familiar with the shape index scale and were 
made aware of the patch radius and target shape index at the start 
of each staircase. Before each staircase, the target shape was 
presented in both positions of the display at random orientations so 
that the observers could become comfortable with its representa- 
tion. Observers were allowed to view this display as long as they 
wished before they continued with the experiment. 

Results and Discussion 

The individual results for all four observers are shown in 
Figure 9. Note that for patch sizes of 3 ° and 4 ° , the observ- 
ers showed a higher level of performance than at the 2 ° case 
at all shape indices. The results for the 3 ° and 4 ° cases are 
in basic agreement with the results of van Damme et al. 
(1994; van Damme & van de Grind, 1993) and de Vries 

Figure 7. Example stimulus (left pair are crossed, fight are divergent). 
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Figure 9. Individual results for Experiment 1 for observers F.P., J.F.N., J.T., and V.P. JND = just 
noticeable difference. 

(1993). van Damme ' s  results showed a strong W shape, 
with poor levels of  performance at shape indices of  - 1 . 0  
and 0.0 and better performance at __+0.5. Our results did not 
reflect as strong an effect, however,  their stimuli were larger 
(6.7 ° and 6.5 ° ) and, therefore, had more contextual infor- 
mation. 

A combined average summary for all four observers is 

0 . 2  

Z 
~ O . I  

Figure 10. 
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Summary results for Experiment 1. JND = just no- 
ticeable differences. 

presented in Figure 10. These results show an interaction 
between the visual angle and shape index with the 2 ° case 
differing from the 3 ° and 4 ° cases. In the 3 ° and 4 ° cases, 
the differences between the various shape standards was 
significant, F(4, 12) = 21.07, p < .001, as was the effect of  
patch size, F(2,  6) = 59.27, p < .005. 

These results suggest that there may be some optimal 
scale at which we are able to distinguish the features nec- 
essary to judge curvature and hence shape index. Just no- 
ticeable differences (JNDs) in van D a mme ' s  (1994) work 
with 6.5 ° patches were even lower than the JNDs we found 
for our largest case of  4 °. From this collection of  results, we 
can conclude that there is a certain amount of  context that is 
necessary for us to make these judgments.  

Furthermore, it is interesting to note that the JNDs for the 
better-performing cases of  3 ° and 4 ° are still somewhat 
high, indicating a rather poor performance in general on this 
task. A shape index difference of  0.1 (the JND for the bump 
case) is quite significant when we realize that this difference 
is 1/2oth of  the entire shape index scale. The lower JNDs 
around the monoclastic cases ( - 0 . 5  and 0.5) show that we 
are more sensitive when'one of  the curvatures is zero or fiat. 
We  seem to be more sensitive to the presence of  the cur- 
vature than its magnitude, and we would appear to be 
slightly less sensitive when the curvatures are in the same 
direction. 
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E x p e r i m e n t  2 

In Experiment 1, observers reported the subjective im- 
pression that they were not attempting to judge the local 
curvatures to determine shape, but were instead doing some 
variety of  object recognition to find the patch that matched 
the standard. Note that we utilize the term object recogni- 
tion as referring to the identification of  some continuous, 
globally coherent surface patch. This is not the same as the 
more global definition of identifying, for example, a tele- 
phone. The studies of  van Damme et al. (1994) showed that 
we could, in fact, reliably discriminate shape index of these 
smoothly varying patches (with 6.5 ° of  context). 

Unfortunately, most of  the world, in general, is not made 
up of these mathematically nice pieces of  geometry. Even 
articles that we associate as being spherical are not usually 
entirely spherical, even at low levels of  resolution. A base- 
ball, for example, has stitches that create courses and runs 
along the roughly spherical leather surface. However,  we 
still see the ball as a round object. Clearly, there is a 
scale-dependent process at work that allows us to make 
these judgments. Objects in nature often times have differ- 
ent appearances when viewed at different scales. A tree, for 
example, might appear just as a two-dimensional T-shaped 
cutout from sufficiently far away. 

Fractal geometry has been of interest in the mathematics 
community for some time. For many years, the computer 
graphics community has used fractal techniques for the 
simulation of  natural phenomena (Mandelbrot, 1983; Pent- 
land, 1983). Perlin (1985) and Peachy (1985) simulta- 
neously developed image synthesis techniques based on the 
fractal-like combination of  random noise, opening up a 
huge class of  natural phenomena such as fire, smoke, 
clouds, marbling, and wood grains to successful visual 
modeling. In addition, it has been shown by Gilden, 
Schmuckler, and Clayton (1993) and Knill et al. (1990) that 
the human visual system is capable of  making reliable 
discriminations of  fractal images. 

In our second experiment, we chose not only to restrict 
the context of  the target patch, but to also embed it in a 
context of  fractallike turbulence that might provide distract- 
ing to the task of object recognition. 

M e t h o d  

Apparatus. The apparatus and setup were the same as in Ex- 
periment 1. 

Stimuli. The central patch of the stimuli were the same 
smoothly varying surfaces as utilized in Experiment 1 (see Equa- 
tion 4). The surrounds were no longer fiat, but instead, were 
generated using a turbulent self-similarity procedure. 

A turbulent surface was generated by combining multiple oc- 
taves of two-dimensional noise (as per Peachey, 1985, and Perlin, 
1985) using a 1/f ~ power spectrum. This type of fractal turbulence 
is often used to simulate natural phenomena such as mountains, 
marble, fire, and clouds in computer graphics displays (see Figure 
11). 

To generate these surfaces, a two-dimensional integer lattice of 
random noise is generated. We will refer to it as X(x i, Yi), where we 
define xi as the integer part of x and xy as the fractional part of x 
(and similarly for y). The distance between the integer lattice 
points constitutes the base wavelength of the resulting surface, 
which we will define below. To obtain a value at a given real- 
valued location, a bicubic interpolation is performed, using the 
smooth Hermite cubic, 

h ( x ) = 3 x 2 - 2 x  3, (9) 

and the interpolation function ~, 

t(ot,/3,8) = [h(8)" a] + [h(1.0 - 8)./3], (10) 

where a and/3 represent the two values to be interpolated and 8 
represents the percentage along that line. The resulting real-valued 
noise function is then defined as: 

noise(x,y) = ~{~[X(xi,Yi),X(xi + 1,y,),xf], 

t(A(xi,y,),X(x,,yi + l),xf],yy}. (11) 

Figure 11. A turbulent surface and its contour plot. 
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This yields a smooth, differentiable function that can then be used 
to create the surfaces for the stimuli. To generate turbulent sur- 
faces, n octaves of this noise are summed, yielding a fractal-like 
Monge form surface, or more formally 

n . 

Z~,rb(X,Y) = ~ no,se(x,y) 
z..t fn  • 

1 

(12) 

These surfaces differ from true fractals in that they are everywhere 
continuous, and thus, differentiable. Note that by increasing n and, 
therefore, adding more octaves of noise, smaller features result on 
this surface. 

An example of a turbulent surface created with three octaves of 
noise is shown in Figure 11, along with its associated contour plot. 

For this experiment, three octaves of noise were used, and the 
spatial frequencies of the resulting features generated by the tur- 
bulence were matched to the size of the test patch by defining the 
integer lattice A appropriately. 

Using a feature analysis algorithm, locations on this infinite 
surface were sampled and correlated with the current smooth test 
patch. This algorithm attempted to find regions on the turbulent 
shape that resembled the probe shape by using a template matching 
algorithm. Fits were calculated as height correlations between the 
desired smooth patch and the turbulent surface. When a location of 
acceptable fit was found, the smooth probe patch was embedded 
within the turbulent patch using the same blending operation as in 
Experiment 1. In this case, the resulting surface equation is more 
complicated because the smooth patch z(r, O) is blended with the 
turbulent surface Z,urb (r, O) as is shown in Equation 13, 

z'(r,O) = z(r,O)'{1 - h[t(r,2,3)]} + Zt,~b(r,O)" h[t(r,2,3)]. (13) 

As in Experiment 1, the stimuli were presented with motion, 
shading, texture, and viewed stereoscopically. A blue dot was 
placed at the probe point. 

An example stimulus is shown as a stereo pair (cross fuse on the 
left, divergent on the right) in Figure 12. 

Observers. The displays were presented to the same four ob- 
servers that served in Experiment 1. 

Procedure. As with Experiment 1, observers were presented 
with two stimuli simultaneously and were asked to indicate the 
stimulus that contained the predefined standard shape patch by 
pressing a button on the mouse. Of the two stimuli displayed, one 
had the target patch embedded, and the other contained a test 

patch. The observers were permitted to view the stimuli as long as 
necessary to make their decision. Feedback was provided in the 
form of a beep for correct responses. 

The experiment was a factorial design of 5 x 2, shape index by 
patch radius, and within subjects. The shape index was probed at 
the five critical locations: - 1.0, -0 .5,  0.0, 0.5, and 1.0 (see Figure 
3), whereas curvedness was fixed at a constant 0.5 cm-1. Only 
patch radii of 1.5 and 2 cm (3 ° and 4 °, respectively) were used in 
this experiment, as the 2 ° case proved too difficult in the previous 
experiment. 

As in Experiment 1, the two stimuli on each trial initially 
appeared in a frontoparallel orientation and were rotated back and 
forth about the vertical axis through an angular extent of ---12 °. 
The same adaptive staircase, as in Experiment 1, was run with 10 
reversals to provide a 75% discrimination threshold. Four runs of 
25 shapes at each level were performed by each observer. 

As with Experiment 1, all observers were made aware of the 
patch radius and target shape index at the start of each staircase. 
The first display of each staircase consisted solely of the current 
target shape in both stimuli positions and at random orientations. 
Observers were allowed to view this display as long as they wished 
before they continued with the experiment. 

R e s u l t s  a n d  D i s c u s s i o n  

The individual results for the four observers are shown in 
Figure 13. As with the previous experiment,  the patches that 
subtended a larger visual angle elicited better performance. 

However,  the more complex surrounding region caused 
the judgments  to worsen by about 50% across all factors, 
when compared with the results obtained in Experiment 1. 

Similar to the results of  Experiment 1, the patch-viewing 
angle 's  effect was significant, F (1, 3) = 59.141, p < .005, 
indicating a significant difference between the two viewing 
angles. Shape index was significant as well, F(4, 12) = 
27.55, p < .0003. 

The average results in Figure 14 show a stronger overall  
W shape than the prior experiment,  suggesting that the 
ability to detect the presence or absence of  curvature was 
relatively unaffected, but when judging curvatures that were 
synclastic or anticlastic, observers had more difficulty than 
in Experiment 1. Overall,  the observers had more trouble 

Figure 12. An embedded patch of shape index 0.0 and radius of 2.0. 



938 PHILLIPS AND TODD 

o.3 

0.9. 

O. I  

Z 
o 

Ow 

z 

0.3 

0 .9 .  

O.I  

O 

- I  - 0 .  5 0 0 .  5 

FP 

0.3 

0.9.  

30 

O . I  

o I . . . .  I . . . .  I . . . .  I . . . .  I 

J T  

0.3 

0 . 2  

O.I  

J F N  

I . . . .  I . . . .  I . . . .  I . . . .  I 

- I  - 0 .  5 0 O .5  I 

VP 

- i  - 0 . 5  o o.5 r - I  - 0 . 5  
S H A P E  I N D E X  

I . . . .  I . . . .  I 

Figure 13. 
just noticeable difference. 

o o.5 i 

Individual results for Experiment 2 for observers F.P., J.F.N., J.T., and V.P. JND = 

with this task, performing very poorly even with the large 
patch size case. 

In considering the W-shaped psychometric function ob- 
tained in this experiment and in the earlier studies of van 
Damme et al. (1994), it is interesting to note that the form 
of this function is quite similar to the overall distribution of 
shape indices on many natural objects. Figure 15 shows a 
histogram of the relative frequencies of different shape 

0.3 

0 . 2  

Z 

O . I  

I . . . .  I . . . .  I . . . .  I . . . .  r 

- i  -0.5 o 0.5 I 
SHAPE I N D E X  

Figure 14. Summary results for Experiment 2. JND = just no- 
ticeable differences. 

indices for a sample of 100,000 points selected at random on 
the fractal noise surfaces used in this experiment. We have 
also performed similar analyses on several other types of 
objects, including some that are manmade, such as an au- 
tomobile body, and others that occur naturally in the envi- 
ronment, such as a human skull. All of the histograms 
exhibited this same suspension-bridge shape. The fact that 
this same distribution occurs over a wide range of objects 
suggests that it may arise from the basic constraints of 
surface topology. In comparing this distribution with psy- 
chometric functions of human observers, it would appear 
that sensitivity to different shape indices is roughly propor- 
tional to their frequency of occurrence in the natural envi- 
ronment. 

Although there were several redundant sources of infor- 
mation in these displays, including shading, texture, motion, 
and binocular disparity, from which the three-dimensional 
structure of the depicted surfaces could potentially have 
been determined, the ability of observers to discriminate 
local shape was nonetheless surprisingly poor. Note in Fig- 
ure 14, for example, that the JND for negative synclastic 
points was 0.25, a quarter of the entire scale, even for the 
larger patch sizes of 4 ° . There is some reason to suspect, 
moreover, that these results may actually overestimate ob- 
servers' performance. 
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Figure 15. Histogram of shape index of turbulent surfaces. 

An important characteristic of the quadric surface patches 
described in Equation 4 is that the tangent plane at the 
depicted probe point was always perpendicular to the ob- 
server's line of sight. There is a growing amount of evi- 
dence that observers' perceptions of three-dimensional 
structure in both real and pictorial displays can be system- 
atically distorted such that intervals in depth may appear 
stretched or compressed relative to those in the frontopar- 
allel plane (see Norman, Todd, & Phillips, in press, for a 
review). Let us suppose, for the sake of argument, that 
similar perceptual distortions occurred in this experiment. 
For most points on an object's surface an affine distortion of 
its perceived structure in depth would differentially affect 
K1 and K 2, and should, therefore, result in a systematic 
distortion in perceived local shape. However, for those 
points with a frontoparallel tangent plane, an affine distor- 
tion in depth would have identical effects on both K~ and K 2, 
so that perceived local shape would remain invariant. In 
other words, it is reasonable to suspect that the sample of 
probe patches used in this experiment may not have been 
representative of the vast majority of surface patches whose 
tangent planes were not perpendicular to the observer's line 
of sight. 

Experiment 3 

In an effort to avoid this problem in Experiment 3, we 
abandoned the use of imbedded quadric surface patches in 
favor of the more natural, irregular surfaces created by the 
turbulence function we used for the surrounding context in 
Experiment 2. 

Because it appears that observers cannot reliably differ- 
entiate between different magnitudes of curvature (and thus 
shape index) as a patch's context becomes more restricted, 
we were curious if they could perform the conceptually 
simpler task of simply identifying the sign of the local 

Gaussian curvature. This amounts to the modest task of 
estimating the signs of the two principal curvatures K 1 and 
K 2. As shown in Equation 1, the magnitude of the Gaussian 
curvature will be positive if the K 1 and K 2 are in the same 
direction (synclastic), negative if they are in opposite direc- 
tions (anticlastic), and zero if either of the curvatures is zero 
(monoclastic). 

Whereas the shape index of a patch is only invariant 
under affine distortions in depth when its tangent plane is 
perpendicular to the line of sight, the sign of the Gaussian 
curvature is invariant under such distortions for all possible 
orientations of the tangent plane. Because observers were 
simply required to judge the sameness or differentness of 
two directions (not magnitudes) of curvature, we suspected 
that this task might be much easier than the discrimination 
of shape index employed in Experiments 1 and 2. 

M e ~ o d  

Apparatus. The apparatus and setup were the same as in Ex- 
periments 1 and 2. 

Stimuli. As noted above, we abandoned the globally smooth 
Monge form representation of the probe patches in favor of using 
the noise or turbulent surfaces used as surrounds in Experiment 2. 
For these surfaces there is no embedded probe patch, smooth or 
otherwise. Instead, we sample the surface in search of locations 
that meet certain criteria set forth in the Procedure section below. 

Each stimulus was a 12-cm square patch consisting of either two 
or three octaves of turbulent noise. The lowest spatial frequency of 
the turbulence was chosen to provide gross features of approxi- 
mately 4 cm (and thus, 4 ° of visual angle) in size, as this was the 
optimal performance level in the previous experiments. The 1/f t3 
structure of the resulting harmonics created smaller features that 
ranged from approximately 1.0 cm to 4.0 cm in size and whose 
amplitude ranged from one quarter to one half of the amplitude of 
the gross features (see Figures 11 and 16). 

As with the previous experiments, all stimuli were presented 
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Figure 16. Stereo pairs 

with motion, shading, texture, and were viewed stereoscopically. 
A blue dot was placed at the probe point at the center of the patch. 

Observers. The same four observers that served in Experi- 
ments 1 and 2 took part in this experiment. 

Procedure. For this task, observers were presented with a 
single patch with the probe point on the location under test. For all 
test points, the surface was translated such that the probe point was 
at the center of the screen and a constant distance (57.4 cm) away 
from the observer. The observers indicated if the surface at the 
probe location was of positive or negative Gaussian curvature by 
pressing one of two keys on the keyboard. As with the previous 
experiments, the observers were permitted to view the stimuli as 
long as necessary to make their decision. Feedback was provided 
in the form of a beep for correct responses. 

This experiment was a 2 × 5 (turbulence octaves by absolute 
value of shape index), within-subjects factorial design. Two levels 
of turbulence, two and three octaves, were used. These two levels 
seem to create similar amounts of fractal information to that found 
in nature (Knill et al., 1990; Pentland, 1983). The three-octave case 
introduces small features, approximately 1 cm in radius, and thus, 
disrupts the regularity of the surface more than the two-octave case 
whose features are roughly 2 cm. 

The noise function used for this set of experiments was infinite 
in extent. The turbulent patches were stochastically Sampled across 
a 1,000 cm × 1,000 cm region, and the local curvature information 
was calculated at each location. A set of points was collected that 
met the criteria of curvednesses of 0.5 cm-  1 _< C --< 1.0 cm-  1, and 
shape indices whose absolute value fell into one of six bins, 0.05 
wide, centered at 0.143, 0.286, 0.429, 0.571, 0.714, and 0.857. 
Four blocks of 25 trials at each of the six levels of shape index and 
two levels of turbulence were run by each observer. 

Notice in Figures 3 or 5 that, for shape indices on the interval 
-0 .5  < S < 0.5, the two principal curvatures are in opposite 
directions, therefore, these shapes have a negative Gaussian cur- 
vature. Similarly, shape indices on the intervals S < -0 .5  and S > 
0.5 have principal curvatures in the same direction, thus, they 
possess positive Gaussian curvature. The six bins provided three 
levels of negative Gaussian curvature and three levels of positive 
Gaussian curvature. 

Results and Discussion 

The data were analyzed by using a probit-style procedure 
to obtain the best-fitting cumulative normal distribution for 

of example turbulent stimuli. 

each condition. The results for the three-harmonic case are 
shown in Figure 17. The data correlated to the cumulative 
normal function (R 2 = 0.99, p < .001). 

The extreme shallowness of  the psychometric function 
reflects the observers '  poor performance for this task. There 
was also a leftward bias to the psychometric function, 
reflecting more trouble identifying the negative curvatures 
than the positive. The 25% and 75% thresholds were at 
shape indices of  approximately 0.14 and 0.68, respectively. 

The psychometric function for the two-harmonic case is 
shown in Figure 18. Phenomenological  reports from the 
observers confirmed this case as being easier than the three- 
harmonic case. Indeed, performance improved somewhat,  
especially on the positive side of  the scale. The 25% and 
75% thresholds improved to 0.31 and 0.57, respectively. 

Figure 17. Summary results of three-harmonic case of Experi- 
ment 3. Resp = response. 
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surround, but it continued to use a purely local shape metric 
(sign of  Gaussian curvature), which was defined only at the 
probe location. 

In Experiment 4 we define a metric whose neighborhood 
is no longer local, and therefore, can be used to investigate 
the region over which this contextual information is neces- 
sary. 

Figure 18. Results of the two-harmonic case of Experiment 3. 
Resp = response. 

Finally,  a Kolmogorov-Smirnov  two-sample test was run to 
compare the two psychometric  functions. This yie lded 
D(1200, 1200) = 0.22, exceeding the critical value of  0.067, 
showing a significant difference of  the two cumulative 
normal distributions with a p < .01. 

As with the three-harmonic case, there was a slight bias 
toward the left, indicating that observers performed better at 
identifying the positive curvatures than the negative curva- 
tures. 

It would appear that in both cases the additional high- 
frequency features in the area surrounding the probe loca- 
tion interfered with the identification of  the sign of  the 
principal curvatures. In addition, because of  the shift seen in 
the psychometric function, locations where the patches 
curved in opposite directions suffered more adversely. 

These effects were greatly reduced in the two-harmonic 
case, which reduced the spatial frequency of  these addi- 
tional confounding features. This further reinforces the re- 
suits of  Experiments 1 and 2, showing that there is a large 
region of  smooth context necessary for the identification of  
the local surface curvatures. 

E x p e r i m e n t  4 

Experiments 1-3 suggest that there is some contextual 
area over which these curvature judgments  are made. Be- 
cause the curvature metrics presented so far have all been 
local, they are only valid at the probe location, and there- 
fore, may change rapidly from point to point on the surface. 
This reflects the nature of  the turbulent surfaces presented in 
Experiments 2 and 3. The smooth probe patches util ized in 
Experiments 1 did not suffer from this rapid variance. In 
Experiment 2 we introduced a turbulent context and still 
used the smooth probe patch from Experiment 1. Experi- 
ment 3 introduced a turbulent probe location as well as the 

M e ~ o d  

Apparatus. The apparatus and setup were the same as in Ex- 
periments 1, 2, and 3. 

Stimuli. Stimuli for Experiment 4 were the same turbulent 
surfaces used in Experiment 3. Because, in Experiment 3, perfor- 
mance was best in the two-harmonic case, it was used only in this 
experiment. 

Observers. Three of the four observers that served in Experi- 
ments 1, 2, and 3 took part in this experiment. 

Procedure. For this task, observers were presented with a 
single patch with the probe point on the location under test. For all 
test points, the surface was translated such that the probe point was 
at the center of the screen and a constant distance (57.4 cm) away 
from the observer. The observers indicated if the surface at the 
probe location was of positive or negative Gaussian curvature by 
pressing one of two keys on the keyboard. As with the previous 
experiments, the observers were permitted to view the stimuli as 
long as necessary to make their decision. 

An extension of the shape index was created, yielding a metric 
that took into account a larger region than a strictly local neigh- 
borhood. A disk of some radius r, centered at the probe point, was 
randomly sampled with the resulting set of surface normals and 
frames used in the principal curvature calculations. In essence, this 
results in average principal curvatures for some region of radius r, 
centered at the probe point. This had the net effect of canceling out 
any smaller perturbations of the surface in favor of the more 
statistically dominant feature. For example, if a concave synclastic 
patch of some chosen radius was dotted with smaller, higher 
frequency bumps, the operator described above would report the 
lower frequency depression if the radius of the disk were roughly 
the size of the depressed region. If the radius of the disk were as 
small as the high-frequency bumps, it would instead reflect the 
shape of these features. 

This experiment was a 3 × 5, sample disk radii by absolute 
value of shape index, within-subjects factorial design. All displays 
had two octaves of turbulence with a base wavelength of 4 ° of 
visual angle, thus, the resulting harmonics created smaller features 
up to 2 ° in size. 

Three sampling disk radii, 0.5 cm, 1.0 cm, and 2.0 cm, yielding 
visual angles of 1% 2 ° , and 4 ° , respectively were used. As in 
Experiment 3, the turbulent patches were stochastically sampled 
and the local curvature information was calculated at each location 
using the area-based method described above. A set of points was 
collected that met the criteria of curvednesses of 0.5 cm-  1 < C -< 
1.0 cm-1, and shape indices whose absolute value fell into one of 
six bins, 0.05 wide, centered at 0.143, 0.286, 0.429, 0.571, 0.714, 
and 0.857. Three blocks of 25 trials at each of the six levels of 
shape index and three disk radii were run by each observer. 

On each trial, observers were presented with a single patch and 
responded as to the sign of the Gaussian curvature at the probe 
point. The keyboard was used for responses, and feedback was 
provided for correct responses. At the beginning of each block 
observers were informed of the sampling disk radius that would be 
used. They were also given feedback after each trial to help them 
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learn to integrate information over an appropriate sized neighbor- 
hood to be used in making their responses, 

and 4, we are now faced with the problem of deciding 
exactly what constitutes a feature. 

Results and Discussion 

The psychometric functions from all three disk radii are 
displayed in Figure 19. All three functions fit the cumulative 
normal with R2s of less than 0.94, p < .005. The 
Kolmogorov-Smirnov test showed a significant difference 
(p < .01) between the 2 ° and 4 ° cases and the 1 ° and the 4 ° 
cases. There was not a significant difference between the 1 ° 
and the 2 ° cases. 

Observers reported some frustration with this task, espe- 
cially with respect to the feedback, which at times felt 
inconsistant. As the radius of the neighborhood was in- 
creased, the psychometric function became shallower. Only 
for the best case, seen on the left of Figure 20, does the 
psychometric function roughly equal the performance of the 
purely local shape function. A Kolmogorov-Smimov test 
between the 1 ° case (which used two harmonics) from this 
experiment and the purely local, two-harmonic case of 
Experiment 3, showed no significant difference. 

Thus, it would seem that observers are probably not 
averaging the local shape information over a fixed neigh- 
borhood as we may have expected from the results of 
Experiments 1-3. Because a fixed sampling radius was used 
in each block, this also may suggest that the observers were 
not using a fixed scale to determine the features of the point 
under investigation. 

Indeed, much of the observer's frustration seemed to stem 
from the fact that it was difficult to know the size of the 
feature whose curvatures were being evaluated. When con- 
sidering the results from the previous three experiments, it 
would appear that the area over which we make these 
curvature judgments depends on the size of the feature in 
question. Unfortunately, as we have seen in Experiments 3 

Figure 19. Summary of Experiment 4. Resp = response. 

General  Discussion 

Our informal description of shape is just that, a casual, 
nonspecific naming of the configuration of the constituent 
parts of the object. A more rigorous definition of shape 
would require some regional metric descriptions, which, in 
combination, map to our higher order nominal descriptions. 
Most models of solid shape perception proposed to date 
have relied on a representation similar to that of the 21/2 D 
sketch. 

One problem with these models is that they are sensitive 
to variations in orientation and scale. Two similar but dif- 
ferent sized objects will require two completely different 
representations because the depths of points at nominally 
equal locations will not be the same. Also, a simple rotation 
of the object destroys our ability to recover the configura- 
tion. 

Pinker (1985) points out that this scheme is not well 
suited to a representational system because it would require 
an excessive number of object representations with which to 
match. Every possible set of orientations or depths would 
require a separate representation because they vary exces- 
sively whenever the object or viewer move relative to one 
another. As the result of several experiments performed on 
the observers' ability to judge slanted planes, Gibson (1979) 
later withdrew his support for such an idea. 

Similar results have been obtained for local orientation 
judgments on more complex surfaces. Recent experiments 
by Koenderink, 1994 and Koenderink, van Doom, and 
Kappers (1992; 1995), Koenderink and van Doom (1995), 
Koenderink, Kappers, Todd, Norman, and Phillips (1996), 
Norman et al. (in press), and Todd, Koenderink, van Doom, 
and Kappers (1996) show that, across observers and view- 
ing conditions, there is an extraordinary amount of variance 
in the surface reconstructed from the perceived orientations. 

One solution to this problem is to use high-order position- 
invariant measures, such as shape index and Gaussian cur- 
vature to describe the surfaces of an object. Some previous 
studies have used the shape index in several different con- 
texts; shape-from-stereo (de Vries, 1993), shape-from-mo- 
tion-parallax (van Damme et al., 1994; van Damme & van 
de Grind, 1993), and shape-from-shading (Erens, 1993a; 
1993b). 

In the four experiments described in this article we sub- 
jected observers to various complex stimuli and evaluated 
their ability to judge two higher order measures of surface 
structure at a depicted probe point; shape index and sign of 
Gaussian curvature, which evolve from measurements of 
local curvature. We saw in Experiment 1 that our perception 
of the local curvatures, and thus the shape index, depended 
on how much of a surface we were shown. The local 
property of shape index seemed to require a significant 
neighborhood, not just its local information. A minimum of 
2 ° to 3 ° of contextual information was needed to perform 
this task reliably. In previous research, Todd and Reichel 
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Figure 20. Results of the 1 ° (left panel) and 4 ° (right panel) cases. Resp = response. 

(1989) have shown similar difficulty in deducing the ordinal 
structure of surfaces when context is restricted. 

Experiment 2 helped to confirm the observer's reports 
that they were basing their responses on the global context 
rather than the local shape index. The contextual noise 
added by the turbulent patches reduced performance by 
approximately 50% relative to Experiment 1. 

Because of the potentially nongeneric properties of the 
quadric patches used in Experiments 1 and 2, Experiment 3 
used natural appearing, turbulent surfaces and probed points 
whose tangent surface was no longer confined to the fron- 
toparallel plane. The task was simplified to judging the 
sameness or differentness of the directions of the principal 
curvatures. Here, we saw a significant decrease in the ob- 
server's ability to make this relatively simple judgment 
when the amount of turbulence, and thus, the number of 
higher frequency features surrounding the probe point was 
increased. 

Finally, in Experiment 4 we drew on the results of Ex- 
periments 1 and 2 by attempting to take into consideration 
the quality of the surface around the probe points. A non- 
local, averaging curvature operator was developed in an 
attempt to describe the neighborhood-based curvatures in a 
given area of the patch. Using the turbulent stimuli from 
Experiment 3, observers still had difficulty in judging the 
sign of Gaussian curvature when a larger context was con- 
sidered for the calculation of the curvatures. Because this 
experiment used fixed scales for the shape operator, it 
would suggest that observers were not using a fixed scale to 
make these judgments. As suggested by Koenderink 
(1984b), perhaps the observers were exploiting their ability 
to tune their outer and inner scales to match the features 
found in the stimuli. 

Across these experiments, we have manipulated the 
neighborhood three different ways: by varying the amount 

of smooth context surrounding the probed area, varying the 
amount of harmonic noise surrounding the patch, and 
finally by creating an operator that worked over varying 
neighborhood sizes. Despite all the cues given, including 
motion, stereo, texture, and shading, our results have shown 
that performance remains rather poor for these types of 
discriminations, and that it requires a significant amount of 
context from the surrounding neighborhood. Given this 
much contextual information, however, it would seem the 
task becomes that of recognizing a global surface patch, 
rather than its local curvature. 

Edge-based approaches, such as those of Biederman 
(1987) and Richards et al. (1987), seem to have a good deal 
of explanatory power when it comes to the edges and 
occlusion contours of an object. However, any smoothly 
curved internal structure will lack adequate description us- 
ing these models. Can we can extend the idea of geons being 
parts of objects to what might constitute a part primitive 
within the internal structure of a smoothly curved object? 

One such approach is that of Koenderink (1977) and 
Koenderink and van Doom (1980), who demonstrated that 
the local structural properties of an object can be mathe- 
matically determined through analysis of isophotes (i.e., 
lines of constant luminance), yielding connected regions of 
positive and negative Gaussian curvature. This establishes 
two important concepts: First, that the local structure is 
determinable using features other than occlusion contours, 
and second, that these features can be used in a viewer and 
light source invariant way. It remains to be seen if this 
characteristic of solid shape can be used empirically. 

Another interesting possibility is that we are utilizing 
some multiresolution strategy where a set of uniform prim- 
itives are used but at varying scales. Koenderink (1984b) 
has also investigated the use of scale space as a method to 
describe the scale related information available in an image. 
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Scale can be thought of  as consisting of  two components, 
the first being the outer scale, essentially the extent of  the 
image, and the inner scale, which specifies the resolution of  
the elements that make up the image. This idea can easily be 
extended to the geometry and topological features of  a 
surface as well. As we pointed out in our discussion of  the 
fractal surrounds, the scale utilized to describe an object 
only makes sense in a given context. A golf ball, for 
example, with its hundreds of  dimples, is a sphere at one 
scale and a concave pitted surface at another. In this case, as 
with the stimuli from our experiments, the features we wish 
to examine exist at some scales and not at others. Our 
research suggests that perceived shape is most salient over 
spatial neighborhoods of  approximately 3 ° to 4 ° . Whether 
this holds for other classes of  objects and viewing condi- 
tions remains to be experimentally determined. 
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